, Volume 26, Issue 2, pp 398–406 | Cite as

Phragmites australis invasion and expansion in tidal wetlands: Interactions among salinity, sulfide, and hydrology

  • R. M. Chambers
  • D. T. Osgood
  • D. J. Bart
  • F. Montalto


Through their physiological effects on ion, oxygen, and carbon balance, respectively, salinity, sulfide, and prolonged flooding combine to constrain the invasion and spread ofPhragmites in tidal wetlands. Initial sites of vigorous invasion by seed germination and growth from rhizome fragments appear limited to sections of marsh where salinity is <10‰, sulfide concentrations are less than 0.1 mM, and flooding frequency is less than 10%. In polyhaline tidal wetlands the invasion sites include the upland fringe and some high marsh creek banks. The zones of potential invasion tend to be larger in marshes occupying lower-salinity portions of estuaries and in marshes that have been altered hydrologically. Owing to clonal integration and a positive feedback loop of growth-induced modification of edaphic soil conditions, however, a greater total area of wetland is susceptible toPhragmites expansion away from sites of establishment. Mature clones have been reported growing in different marshes with salinity up to 45‰, sulfide concentration up to 1.75 mM, and flooding frequency up to 100%. ForPhragmites establishment and expansion in tidal marshes, windows of opportunity open with microtopographic enhancement of subsurface drainage patterns, marsh-wide depression of flooding and salinity regimes, and variation in sea level driven by global warming and lunar nodal cycles. To avoidPhragmites monocultures, tidal wetland creation, restoration, and management must be considered within the context of these different scales of plant-environment interaction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adams, J. andG. Bate. 1999. Growth and photosynthetic performance ofPhragmites australis in estuarine waters: A field and experimental approach.Aquatic Botany 64:359–367.CrossRefGoogle Scholar
  2. Amsberry, L., M. A. Baker, P. J. Ewanchuk, andM. D. Bertness. 2000. Clonal integration and the expansion ofPhragmites australis.Ecological Applications 10:1110–1118.CrossRefGoogle Scholar
  3. Armstrong, J., F. Afreen-Zobayed, andW. Armstrong. 1996.Phragmites die-back: Sulphide- and acetic acid-induced bud and root death, lignifications, and blockages within aeration and vascular systems.New Phytologist 134:601–614.CrossRefGoogle Scholar
  4. Armstrong, J., F. Afreen-Zobayed, S. Blyth, andW. Armstrong. 1999.Phragmites australis: Effects of shoot submergence on seedling growth and survival and radial oxygen loss from roots.Aquatic Botany 64:275–289.CrossRefGoogle Scholar
  5. Armstrong, J. andW. Armstrong. 1991. A convective through-flow of gases inPhragmites australis (Cav.) Trin. ex Steudel.Aquatic Botany 39:75–88.CrossRefGoogle Scholar
  6. Armstrong, J., W. Armstrong, andP. M. Beckett. 1992.Phragmites australis: Venturi- and humidity-induced pressure flows enhance rhizone aeration and rhizosphere oxidation.New Phytologist 120:197–207.CrossRefGoogle Scholar
  7. Baldwin, A. H. andI. A. Mendelssohn. 1998. Effects of salinity and water level on coastal marshes: An experimental test of disturbance as a catalyst for vegetation change.Aquatic Botany 61:255–268.CrossRefGoogle Scholar
  8. Bart, D. J. andJ. M. Hartman. 2000. Environmental determinants ofPhragmites australis expansion in a New Jersey salt marsh: An experimental approach.Oikos 89:59–69.CrossRefGoogle Scholar
  9. Bart, D. J. andJ. M. Hartman. 2002. Environmental constraints on early establishment ofPhragmites australis in salt marshes.Wetlands 22:201–213.CrossRefGoogle Scholar
  10. Bart, D. andJ. M. Hartman. 2003. The role of large rhizome dispersal and low salinity windows in the establishment of common reed,Phragmites australis in salt marshes: New links to human activities.Estuaries 26:436–443.CrossRefGoogle Scholar
  11. Burdick, D. M., R. Buchsbaum, andE. Holt. 2001. Variation in soil salinity associated with expansion ofPhragmites australis in salt marshes.Environmental and Experimental Botany 46:247–261.CrossRefGoogle Scholar
  12. Burdick, D. M. andM. Dionne. 1994. Comparison of salt marsh restoration and creation techniques in promoting native vegetation and functional values. Office of State Planning, Concord, New Hampshire.Google Scholar
  13. Burdick, D. M., M. Dionne, R. M. Boumans, andF. T. Short. 1997. Ecological responses to tidal restoration of two northern New England salt marshes.Wetlands Ecology and Management 4:129–144.CrossRefGoogle Scholar
  14. Chambers, R. M., L. A. Meyerson, andK. Saltonstall. 1999. Expansion ofPhragmites into tidal wetlands of North America.Aquatic Botany 64:261–273.CrossRefGoogle Scholar
  15. Chambers, R. M., T. J. Mozdzer, andJ. C. Ambrose. 1998. Effects of salinity and sulfide on the distribution ofPhragmites australis andSpartina alterniflora in a tidal saltmarsh.Aquatic Botany 62:161–169.CrossRefGoogle Scholar
  16. Chambers, R. M., D. T. Osgood, andN. Kalapasev. 2002. Hydrologic and chemical control ofPhragmites growth in tidal marshes of SW Connecticut, USA.Marine Ecology Progress Series 239:83–91.CrossRefGoogle Scholar
  17. Clevering, O. andJ. Lissner. 1999. Taxonomy, chromosome numbers, clonal diversity and population dynamics ofPhragmites australis.Aquatic Botany 64:185–208.CrossRefGoogle Scholar
  18. Crawford, R. M. M. andR. Braendle. 1996. Oxygen deprivation stress in a changing clinate.Journal of Experimental Botany 47:145–159.CrossRefGoogle Scholar
  19. Dahl, T. E. andC. E. Johnson. 1991. Status and trends of wetlands in the conterminous United States, mid-1970s to mid-1980s. U.S. Fish and Wildlife Service, Washington, D.C.Google Scholar
  20. Emery, N. C., P. J. Ewanchuk, andM. D. Bertness. 2001. Competition and salt marsh zonation: Stress tolerators may be dominant competitors.Ecology 82:2471–2485.Google Scholar
  21. Furtig, K., A. Ruegsegger, C. Brunold, andR. Brandle. 1996. Sulphide utilization and injuries in hypoxic roots and rhizomes in common reed (Phragmites australis).Folia Geobotany Phytotaxonomy 31:143–151.CrossRefGoogle Scholar
  22. Gries, C., L. Kappen, andR. Losch. 1990. Mechanism of flood tolerance in reed,Phragmites australis (Cav.) Trin. ex Steudel.New Phytologist 114:589–593.CrossRefGoogle Scholar
  23. Hanganu, J., G. Mihaila, andH. Coops. 1999. Responses of ecotypes ofPhragmites australis to increased seawater influence: A field study in the Danube Delta, Romania.Aquatic Botany 64:351–358.CrossRefGoogle Scholar
  24. Hartzendorf, T. andH. Rolletschek. 2001. Effects of NaCl-salinity on amino acid and carbohydrate contents ofPhragmites australis.Aquatic Botany 69:195–208.CrossRefGoogle Scholar
  25. Havens, K. J., W. I. Priest, III, andH. Berquist. 1997. The investigation ofPhragmites australis within Virginia's constructed wetland sites.Environmental Management 21:599–605.CrossRefGoogle Scholar
  26. Hellings, S. andJ. L. Gallagher. 1992. The effects of salinity and flooding onPhragmites australis.Journal of Applied Ecology 29:41–49.CrossRefGoogle Scholar
  27. Hootsmans, M. J. M. andF. Wiegman. 1998. Four helophyte species growing under salt stress: Their salt of life?Aquatic Botany 62:81–94.CrossRefGoogle Scholar
  28. Howes, B. L., J. W. H. Dacey, andD. D. Goehringer. 1986. Factors controlling the growth form ofSpartina alterniflora: Feedbacks between above-ground production, sediment oxidation, nitrogen and salinity.Journal of Ecology 74:881–898.CrossRefGoogle Scholar
  29. Koch, M. S., I. A. Mendelssohn, andK. L. McKee. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes.Limnology and Oceanography 35:399–408.CrossRefGoogle Scholar
  30. Lissner, J. andH.-H. Schierup. 1997. Effects of salinity on the growth ofPhragmites australis.Aquatic Botany 55:247–260.CrossRefGoogle Scholar
  31. Lissner, J., H.-H. Schierup, F. A. Comínb, andV. Astorgab. 1999. Effect of climate on the salt tolerance of twoPhragmites australis populations. I. Growth, inorganic solutes, nitrogen relations and osmoregulation.Aquatic Botany 64:317–333.CrossRefGoogle Scholar
  32. Marks, M., B. Lapin, andJ. Randall. 1994.Phragmites australis (P. communis): Threats, management, monitoring.Natural Areas Journal 14:285–294.Google Scholar
  33. Mauchamp, A., S. Blanch, andP. Grillas. 2001. Effects of submergence on the growth ofPhragmites australis seedlings.Aquatic Botany 69:147–164.CrossRefGoogle Scholar
  34. Mauchamp, A. andF. Mésleard. 2001. Salt tolerance inPhragmites australis populations from coastal Mediterranean marshes.Aquatic Botany 70:39–52.CrossRefGoogle Scholar
  35. Meyerson, L. A., K. Saltonstall, L. Windham, E. Kiviat, andS. Findlay. 2000. A comparison ofPhragmites australis in freshwater and brackish marsh environments in North America.Wetlands Ecology and Management 8:89–103.CrossRefGoogle Scholar
  36. Michener, W. K., E. R. Blood, K. L. Bildstein, M. M. Brinson, andL. R. Gardner. 1997. Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands.Ecological Applications 7:770–801.CrossRefGoogle Scholar
  37. Minchinton, T. E. 2002. Precipitation during El Nino correlates with increasing spread ofPhragmites australis in New England, USA, coastal marshes.Marine Ecology Progress Series 242:305–309.CrossRefGoogle Scholar
  38. Mitsch, W. J. andJ. G. Gosselink. 2000. Wetlands. Wiley and Sons, New York.Google Scholar
  39. National Research Council. 2001. Compensating for wetland losses under the Clean Water Act. National Academy Press, Washington, D.C.Google Scholar
  40. Niering, W. A. andR. S. Warren. 1980. Vegetation patterns and processes in New England salt marshes.BioScience 30:301–307.CrossRefGoogle Scholar
  41. Nuttle, W. K. andJ. W. Portnoy. 1992. Effect of rising sea level on runoff and groundwater discharge to coastal ecosystems.Estuarine, Coastal and Shelf Science 34:203–212.CrossRefGoogle Scholar
  42. Odum, W. E., T. J. Smith, III,J. K. Hoover, andC. C. McIvor. 1984. The ecology of tidal freshwater marshes of the United States east coast: A community profile. FWS/OBS-83/17. U.S. Fish and Wildlife Service, Washington, D.C.Google Scholar
  43. Oost, A. P., H. de Haas, F. Jensen, J. M. van den Boogert, andP. L. de Boer. 1993. The 18.6 year lunar nodal cycle and its impact on tidal sedimentation.Sedimentary Geology 87:1–11.CrossRefGoogle Scholar
  44. Osgood, D. T., D. J. Yozzo, R. M. Chambers, andD. Jacobson. 2003. Tidal hydrology and habitat utilization by resident nekton inPhragmites and non-Phragmites marshes.Estuaries 26: 522–533.CrossRefGoogle Scholar
  45. Power, M. E., D. Tilman, J. A. Estes, B. A. Menge, W. J. Bond, L. S. Mills, G. Daily, J. C. Castilla, J. Lubchenko, andR. T. Paine. 1996. Challenges in the quest for keystones.BioScience 46:609–620.CrossRefGoogle Scholar
  46. Rice, D., J. Rooth, andJ. C. Stevenson. 2000. Colonization and expansion ofPhragmites australis in upper Chesapeake Bay tidal marshes.Wetlands 20:280–299.CrossRefGoogle Scholar
  47. Roman, C. T., W. A. Niering, andR. S. Warren. 1984. Salt marsh vegetation change in response to tidal restriction.Environmental Management 8:141–150.CrossRefGoogle Scholar
  48. Rooth, J. andJ. C. Stevenson. 2000. Sediment deposition patterns inPhragmites australis communities: Implications for coastal areas threatened by rising sea-level.Wetlands Ecology and Management 8:173–183.CrossRefGoogle Scholar
  49. Ryther, J. H. andW. M. Dunstan. 1971. Nitrogen, phosphorus and eutrophication in the coastal marine environment.Science 171:1008–1013.CrossRefGoogle Scholar
  50. Saltonstall, K. 2002. Cryptic invasion by non-native genotypes of the common reed,Phragmites australis, into North America.Proceedings of the National Academy of Sciences 99:2445–2449.CrossRefGoogle Scholar
  51. Seliskar, D. M. and J. L. Gallagher. 2000. Sulfide sensitivity of five species of tidal marsh plants. INTECOL's VI International Wetlands Conference, August 6–12, 2000. Quebec City, Canada.Google Scholar
  52. Sinicrope, T. L., P. G. Hine, R. S. Warren, andW. A. Niering. 1990. Restoration of an impounded marsh in New England.Estuaries 13:25–30.CrossRefGoogle Scholar
  53. Taylor, N. 1939. Salt tolerance of Long Island salt marsh plants. Circular 23. New York State Museum, Albany, New York.Google Scholar
  54. Van der Putten, W. H. 1997. Die-back ofPhragmites australis in European wetlands: An overview of the European Research Programme on Reed Die-back and Progression (1993–1994).Aquatic Botany 59:263–275.CrossRefGoogle Scholar
  55. Vretare, V., S. E. B. Weisner, J. A. Strand, andW. Granéli. 2001. Phenotypic plasticity inPhragmites australis as a functional response to water depth.Aquatic Botany 69:127–145.CrossRefGoogle Scholar
  56. Warren, R., P. Fell, J. Grimsby, E. Buck, C. Rilling, andR. Fertik. 2001. Rates, patterns, and impacts ofPhragmites australis expansion and effects of experimentalPhragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River.Estuaries 24:90–107.CrossRefGoogle Scholar
  57. Wijte, A. H. B. M. andJ. L. Gallagher. 1996a. Effect of oxygen availability and salinity on early life history stages of salt marsh plants. I. Different germination strategies ofSpartina alterniflora andPhragmites australis (Poaceae).American Journal of Botany 83:1337–1342.CrossRefGoogle Scholar
  58. Wijte, A. H. B. M. andJ. L. Gallagher. 1996b. Effect of oxygen availability and salinity on early life history stages of salt marsh plants. II. Early seedling development advantage ofSpartina alterniflora overPhragmites australis (Poaceae).American Journal of Botany 83:1343–1350.CrossRefGoogle Scholar
  59. Windham, L. andR. Lathrop. 1999. Effects ofPhragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marshes of the Mullica River, New Jersey.Estuaries 22:927–935.CrossRefGoogle Scholar
  60. Windham, L. M., J. S. Weis, andF. Weis. 2001. Patterns and processes of mercury release from leaves of two dominant salt marsh macrophytes,Phragmites australis andSpartina alterniflora.Estuaries 24:787–796.CrossRefGoogle Scholar
  61. Winogrond, H. G. andE. Kiviat. 1997. Invasion ofPhragmites australis in the tidal marshes of the Hudson River, p. 1–29.In W. C. Nieder and J. R. Waldman (eds.), Final Reports of the Tibor T. Polgar Fellowship Program 1996. Hudson River Foundation and New York State Department of Environmental Conservation, Hudson River National Estuarine Research Reserve, New York.Google Scholar
  62. Yang, X., D. R. Miller, X. Xu, L. H. Yange, H. Chen, andN. P. Nikolaidis. 1996. Spatial and temporal variations of atmospheric deposition in interior and coastal Connecticut.Atmospheric Environment 30:3801–3810.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2003

Authors and Affiliations

  • R. M. Chambers
    • 1
  • D. T. Osgood
    • 2
  • D. J. Bart
    • 3
  • F. Montalto
    • 4
  1. 1.Biology Department and Virginia Institute of Marine ScienceCollege of William and MaryWilliamsburg
  2. 2.Biology DepartmentAlbright CollegeReading
  3. 3.Graduate Program in Ecology and EvolutionRutgers UniversityNew Brunswick
  4. 4.College of Agriculture and Life SciencesCornell UniversityIthaca

Personalised recommendations