Cell Biophysics

, Volume 20, Issue 2–3, pp 111–123 | Cite as

Microcalorimetric evaluation of the effects of methotrexate and 6-thioguanine on sensitive T-lymphoma cells and on a methotrexate-resistant subline

  • Jordi Bermudez
  • Per Bäckman
  • Arne Schön
Article

Abstract

Isothermal microcalorimetry was used in order to continuously monitor and quantitatively assess the action of two antineoplastic drugs, methotrexate (MTX) and 6-thioguanine (6-TG), on a human T-lymphoma cell line, CCRF-CEM. The results with MTX were compared with data from experiments with a MTX-resistant subline, CEM/MTX. The slope of the power-time curve after drug injection relative to that obtained during unperturbed growth, was used to construct dose-response curves. The normal cell line was characterized by aD50 value (i.e., the dose producing half the maximal response) of 0.05 μM for MTX and 0.38 μM for 6-TG. For the MTX-resistant subline theD50 value was 8 μM of MTX. Comparisons of the continuous power-time curves showed the inhibitory effect of 6-TG to be faster than that of MTX.

Index Entries

Microcalorimetry on T-lymphoma cells 6-thioguanine methotrexate methotrexate resistant cells dose-response curves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bäckman, P., Kimura, T., Schön, A., and Wadsö, I. (1992) Effects of pH-variations on the kinetics of growth and energy metabolism in cultured T-lymphoma cells: a microcalorimetric study.J. Cell. Physiol. 150, 99–103.PubMedCrossRefGoogle Scholar
  2. 2.
    Kemp, R. B. (1991) Calorimetric studies of heat flux in animal cells.Thermochim. Acta 193, 253–267.CrossRefGoogle Scholar
  3. 3.
    Borrebaeck, C. A. K., and Schön, A. (1987) Antiproliferative response of human leukemic cells: PHA induced inhibition of DNA-synthesis and cellular metabolism.Cancer Res. 47, 4345–4350.PubMedGoogle Scholar
  4. 4.
    Schön, A. and Wadsö, I. (1988) The potential use of microcalorimetry in predictive tests of the action of antineoplastic drugs on mammalian cells.Cytobios. 55, 33–39.PubMedGoogle Scholar
  5. 5.
    Kimura, T., Schön A., and Wadsö, I. (1990) Prediction of the cytotoxic effects of some antineoplastic drugs on cultured T-lymphoma cells.Cytobios. 63, 7–13.PubMedGoogle Scholar
  6. 6.
    Armstrong, R. D., Vera, R., Snyder, P., and Cadman, E. (1982) Enhancement of 6-thioguanine cytotoxic activity with methotrexate.Biochem. Biophys. Res. Commun. 109, 595–601.PubMedCrossRefGoogle Scholar
  7. 7.
    Jansen, G., Westerhof, G. R., Kathmann, I., Rademaker, B. C., Rijksen, G., and Schornagel, J. H. (1989) Identification of a membrane-associated folate binding protein in human leukemic CCRF-CEM cells with transport-related methotrexate resistance.Cancer Res. 49, 2455–2459.PubMedGoogle Scholar
  8. 8.
    Martin, D. S. (1987) Purine and pyrimidine biochemistry, and some relevant clinical and preclinical cancer chemotherapy research, inMetabolism and Action of Anticancer Drugs, Powis, G. and Prough, R. A., eds., Taylor and Francis, London, UK, pp. 91–140.Google Scholar
  9. 9.
    Foley, G. E., Lazarus, H., Farber, S., Geren Uzman, B., Boone, B. A., and McCarthy, R. E. (1965) Continuous culture of human lymphoblasts from peripheral blood of a child with acute leukemia.Cancer 18, 522–529.PubMedCrossRefGoogle Scholar
  10. 10.
    Suurkuusk, J. and Wadsö, I. (1982) A multichannel microcalorimeter system.Chem. Scr. 20, 155–163.Google Scholar
  11. 11.
    Bäckman P. and Wadsö, I. (1991) Cell growth experiments using a microcalorimetric vessel equipped with oxygen and pH electrodes.J. Biochem. Biophys. Meth. 23, 283–293.PubMedCrossRefGoogle Scholar
  12. 12.
    Görman Nordmark, M., Laynez, J., Schön, A., and Wadsö, I. (1984). Design and testing of a new microcalorimetric vessel for use with living cellular systems and in titration experiments.J. Biochem. Biophys. Meth. 10, 187–202.CrossRefGoogle Scholar
  13. 13.
    Lönnbro, P. and Wadsö, I. (1991) Effect of dimethyl sulphoxide and some antibiotics on cultured human T-lymphoma cells as measured by microcalorimetry.J. Biochem. Biophys. Meth. 22, 331–336.PubMedCrossRefGoogle Scholar
  14. 14.
    Bäckman, P. (1990) Effects of experimental factors on the metabolic rate of T-lymphoma cells as measured by microcalorimetry.Thermochim. Acta 172, 123–130.CrossRefGoogle Scholar
  15. 15.
    Hill, B. T. and Baserga, R. (1975) The cell cycle and its significance for cancer treatment.Cancer Treat. Rev. 2, 159–175.PubMedCrossRefGoogle Scholar
  16. 16.
    Rosowsky, A., Lazarus, H., Yuan, G. C., Beltz, W. R., Mangini, L., Abelson, H. T., Modest, E. J., and Frei, E., III (1980) Effects of methotrexate esters and other lipophilic antifolates on methotrexate-resistant human leukemic lymphoblasts.Biochem. Pharmacol. 29, 648–652.PubMedCrossRefGoogle Scholar
  17. 17.
    Mini, E., Moroson, B. A., Franco, C. T., and Bertino, J. R. (1985) Cytotoxic effects of folate antagonists against methotrexate-resistant human leukemic lymphoblasts CCRF-CEM cell lines.Cancer Res. 5, 325–330.Google Scholar
  18. 18.
    Schön, A. and Wadsö, I. (1986) Thermochemical characterization of T-lymphoma cells under non-growing conditions.Cytobios. 48, 195–205.PubMedGoogle Scholar

Copyright information

© Humana Press, Inc 1993

Authors and Affiliations

  • Jordi Bermudez
    • 1
  • Per Bäckman
    • 2
  • Arne Schön
    • 2
  1. 1.Facultat d’OdontologiaUniversitat de Barcelona, Feixa LlargaBarcelonaSpain
  2. 2.Division of Thermochemistry, Chemical CenterUniversity of LundLundSweden

Personalised recommendations