, 20:345 | Cite as

Methods of nonlinear random vibration analysis

  • C S Manohar
Advances in nonlinear structural dynamics


The various techniques available for the analysis of nonlinear systems subjected to random excitations are briefly introduced and an overview of the progress which has been made in this area of research is presented. The discussion is mainly focused on the basis, scope and limitations of the solution techniques and not on specific applications.


Nonlinear systems random excitations nonlinear vibration vibration analysis 


  1. Ahmadi G 1980a A note on the Wiener-Hermite representations of the earthquake ground acceleration.Mech. Res. Commun. 7: 7–11zbMATHCrossRefGoogle Scholar
  2. Ahmadi G 1980b Mean square response of a Duffing oscillator to a modulated white noise excitation by the generalized method of equivalent linearization.J. Sound Vib. 71: 9–15zbMATHCrossRefGoogle Scholar
  3. Ahmadi G, Orabi I I 1987 Equivalence of single term Wiener-Hermite and equivalent linearization techniques.J. Sound Vib. 118: 307–311MathSciNetCrossRefGoogle Scholar
  4. Ahmadi G, Su L 1987 Response of a frictional base isolator to random earthquake excitations. FromSeismic engineering: Recent advances is design, analysis, testing and qualification methods. Book No. G00374 (ed) T H Liu, A Marr (New York: ASME) PVP-vol. 127, pp 399–404Google Scholar
  5. Ariaratnam S T 1978 Discussion on the paper by W D Iwan and P T D Spanos.J. Appl. Mech. 45: 964–965Google Scholar
  6. Assaf Sh A, Zirkle L D 1976 Approximate analysis of nonlinear stochastic systems.Int. J. Control 23: 477–492zbMATHCrossRefGoogle Scholar
  7. Atalik T S 1974Stationary random response of nonlinear multidegree of freedom systems by a direct equivalent linearization technique. Ph D thesis, Duke UniversityGoogle Scholar
  8. Atkinson J D 1973 Eigenfunction expansion for randomly excited nonlinear systems.J. Sound Vib. 30: 153–172CrossRefzbMATHGoogle Scholar
  9. Atkinson J D, Caughey T K 1968 Spectral density of piecewise linear first order systems excited by white noise.Int. J. Nonlinear Mech. 3: 137–156MathSciNetCrossRefzbMATHGoogle Scholar
  10. Bellman R E, Richardson J M 1968 Closure and preservation of moment properties.J. Math. Anal. Appl. 23: 639–644zbMATHMathSciNetCrossRefGoogle Scholar
  11. Bergman L A, Spencer B F Jr 1992 Robust numerical solution of the transient Fokker-Planck equation for nonlinear dynamical systems.Procedings of IU TAM symposium on Nonlinear Stochastic Mechanics, Turin, Italy, pp 49–60Google Scholar
  12. Bhandari R G, Sherrer R E 1968 Random vibrations in discrete nonlinear dynamic systems.J. Mech. Eng. Sci. 10: 168–174CrossRefGoogle Scholar
  13. Bharucha Reid A T 1960Elements of theory of Markov processes and their applications (New York: McGraw-Hill)zbMATHGoogle Scholar
  14. Bluman G W 1971 Similarity of the one dimensional Fokker-Planck equation.Int. J. Nonlinear Mech. 6: 143–153MathSciNetCrossRefzbMATHGoogle Scholar
  15. Bogoliubov N N, Mitropolsky Y A 1961Asymptotic methods in the theory of nonlinear oscillations (New York: Gordon and Breach)Google Scholar
  16. Bolotin V V 1967 Statistical aspects in the theory of structural stability. InDynamic stability of structures (ed.) G Hermann (Oxford: Pergamon) 67–81Google Scholar
  17. Bolotin V V 1984Random vibration of elastic systems (Hague: Martinus Nijhoff)Google Scholar
  18. Booton R C 1954 The analysis of nonlinear control systems with random inputs.IRE Trans. Circuit Theory 1: 32–34Google Scholar
  19. Bruckner A, Lin Y K 1987a Generalization of the equivalent linearization method for nonlinear random vibration problems.Int. J. Nonlinear Mech. 22: 227–235MathSciNetCrossRefGoogle Scholar
  20. Brucker A, Lin Y K 1987b Application of complex stochastic averaging to nonlinear random vibration problems.Int. J. Nonlinear Mech. 22: 237–250CrossRefGoogle Scholar
  21. Cai G Q, Lin Y K 1988a On exact stationary solutions of equivalent nonlinear stochastic systems.Int. J. Nonlinear Mech. 23: 315–325zbMATHMathSciNetCrossRefGoogle Scholar
  22. Cai G Q, Lin Y K 1988b A new approximate solution technique for randomly excited nonlinear oscillators.Int. J. Nonlinear Mech. 23: 409–420MathSciNetCrossRefzbMATHGoogle Scholar
  23. Cai G Q, Lin Y K 1990 On randomly excited hysteretic structures.J. Appl. Mech. 57: 442–448zbMATHGoogle Scholar
  24. Casciati F, Faravelli L, Hasofer A M 1993 A new philosophy for stochastic equivalent linearization.Probab. Eng. Mech. 8: 179–185CrossRefGoogle Scholar
  25. Caughey T K 1963a Derivation and application of Fokker-Planck equation to discrete nonlinear dynamic systems subjected to white random excitation.J. Acoust. Soc. Am. 35: 1683–1692MathSciNetCrossRefGoogle Scholar
  26. Caughey T K 1963b Equivalent linearization techniques.J. Acoust. Soc. Am. 35: 1706–1711MathSciNetCrossRefGoogle Scholar
  27. Caughey T K 1971 Nonlinear theory of random vibration. InAdvances in applied mechanics (ed.) C S Yih (New York: Academic Press) 11: 209–243Google Scholar
  28. Caughey T K 1986 On the response of nonlinear oscillators to stochastic excitation.Probab. Eng. Mech. 1: 2–10CrossRefGoogle Scholar
  29. Caughey T K, Dienes J K 1961 Analysis of a nonlinear first order system with white noise input.J. Appl. Phys. 32: 2476–2479zbMATHMathSciNetCrossRefGoogle Scholar
  30. Caughey T K, Ma F 1982a The exact steady state solution of a class of nonlinear stochastic systems.Int. J. Nonlinear Mech. 17: 137–142zbMATHMathSciNetCrossRefGoogle Scholar
  31. Caughey T K, Ma F 1982b The steady state response of a class of dynamical systems to stochastic excitation.J. Appl. Mech. 49: 629–632zbMATHMathSciNetGoogle Scholar
  32. Chambers R P 1967 Random number generation on digital computers.IEEE Spectrum (February): 48–56Google Scholar
  33. Chang R J 1991 Maximum entropy approach for stationary response of nonlinear oscillators.J. Appl. Mech. 58: 266–271zbMATHGoogle Scholar
  34. Crandall S H 1963 Perturbation techniques for random vibration of nonlinear systems.J. Acoust. Soc. Am. 35: 1700–1705MathSciNetCrossRefGoogle Scholar
  35. Crandall S H 1964 The spectrum of random vibration of a nonlinear oscillator.Proceedings 11th International Congress on Applied Mechanics, MunichGoogle Scholar
  36. Crandall S H 1973 Correlations and spectra of nonlinear system response.Nonlinear Vib. Prob. 14: 39–53MathSciNetzbMATHGoogle Scholar
  37. Crandall S H 1980 Non-Gaussian closure for random vibration of nonlinear oscillators.Int. J. Nonlinear Mech 15: 303–313zbMATHMathSciNetCrossRefGoogle Scholar
  38. Crandall S H 1985 Non-Gaussian closure techniques for stationary random vibration.Int. J. Nonlinear Mech. 20: 1–8zbMATHMathSciNetCrossRefGoogle Scholar
  39. Crandall S H, Khabbaz G R, Manning J E 1964 Random vibration of an oscillator with nonlinear damping.J. Acoust. Soc. Am. 36: 1330–1334CrossRefGoogle Scholar
  40. Crandall S H, Chandiramani K L, Cook R G 1966 Some first passage problems in random vibration.J. Appl. Mech. 33: 532–538Google Scholar
  41. Dash P K, Iyengar R N 1982 Analysis of randomly time varying systems by Gaussian closure technique.J. Sound Vib. 83: 241–251zbMATHCrossRefGoogle Scholar
  42. Dashevskii M L 1967 Approximate analysis of the accuracy on nonstationary nonlinear systems using the method of semi-invariants.Autom. Remote Control 28: 1673–1690MathSciNetGoogle Scholar
  43. Davies H G, Nandall D 1986 Phase plane for narrow band random excitation of a Duffing oscillator.J. Sound. Vib. 104: 277–283CrossRefGoogle Scholar
  44. Davies H G, Rajan S 1986 Random superharmonic response of a Duffing oscillator.J. Sound. Vib. 111: 61–70MathSciNetCrossRefGoogle Scholar
  45. Davies H G, Liu Q 1992 The response spectrum of a nonlinear oscillator.J. Appl. Mech. 59: 459–462Google Scholar
  46. Dimentberg M F 1982 An exact solution to a certain nonlinear random vibration problem.Int. J. Nonlinear Mech. 17: 231–236zbMATHMathSciNetCrossRefGoogle Scholar
  47. Dimentberg M F 1988a Discussion on paper by Y Yong and Y K Lin.J. Appl. Mech. 55: 498–499Google Scholar
  48. Dimentberg M F 1988b Statistical dynamics of nonlinear and time-varying systems (Taunton: Research Studies Press)zbMATHGoogle Scholar
  49. Elishakoff I, Cai G Q 1993 Approximate solution for nonlinear random vibration problems by partial stochastic linearization.Probab. Eng. Mech. 8: 233–237CrossRefGoogle Scholar
  50. Elishakoff I, Zhang X 1993 An appraisal of different stochastic linearization procedures.J. Sound. Vib. 152: 370–375MathSciNetGoogle Scholar
  51. Fan G, Ahmadi G 1990 On loss of accuracy and non-uniqueness of solutions generated by equivalent linearization and cumulant-neglect methods.J. Sound Vib 137: 385–401MathSciNetCrossRefGoogle Scholar
  52. Feller W 1966An introduction to probability theory and its applications (New Delhi: Wiley Eastern) vol. 2zbMATHGoogle Scholar
  53. Foster E T Jr 1968 Semilinear random vibrations in discrete systems.J. Appl. Mech. 35: 560–564zbMATHGoogle Scholar
  54. Friedman A 1964Partial differential equations of parabolic type (Englewood Cliffs N J: Prentice Hall)zbMATHGoogle Scholar
  55. Fujita T, Hattori S 1980 Nonstationary random vibration of a nonlinear system with collision.Bull. JSME 23: 1857–1864MathSciNetGoogle Scholar
  56. Fuller A T 1969 Analysis of nonlinear stochastic systems by means of the Fokker-Planck equation.Int. J. Control 9: 603–655zbMATHMathSciNetCrossRefGoogle Scholar
  57. Gardiner C W 1983Handbook of stochastic methods for physics, chemistry and natural sciences (New York: Springer-Verlag)zbMATHGoogle Scholar
  58. Ghanem R, Spanos P D 1993 A stochastic Galerkin expansion for nonlinear random vibration analysis.Probab. Eng. Mech. 8: 255–264CrossRefGoogle Scholar
  59. Grigoriu M 1991 A consistent closure method for nonlinear random vibration.Int. J. Nonlinear Mech. 26: 857–866zbMATHMathSciNetCrossRefGoogle Scholar
  60. Guckenheimer J, Holmes P J 1983Nonlinear oscillators, dynamical systems and bifurcations of vector fields (New York: Springer-Verlag)Google Scholar
  61. Horsthemke W, Lefever R 1984Noise induced transitions theory and applications in physics, chemistry and biology (Berlin: Springer-Verlag)zbMATHGoogle Scholar
  62. Ibrahim R A 1978 Stationary response of a randomly parametric excited nonlinear system.J. Appl. Mech. 45: 910–916Google Scholar
  63. Ibrahim R A 1985Parametric random vibration (Hertfordshire New York: Research Studies Press/John Wiley and Sons)zbMATHGoogle Scholar
  64. Ibrahim R A, Soundararajan A, Heo H 1985 Stochastic response of nonlinear system based on a non-Gaussian closure.J. Appl. Mech. 52: 965–970zbMATHMathSciNetGoogle Scholar
  65. Iwan W D, Krousgrill C M 1983 Equivalent linearization for continuous dynamical systems.J. Appl. Mech. 50: 415–420zbMATHMathSciNetGoogle Scholar
  66. Iwan W D, Mason A B Jr 1980 Equivalent linearization for systems subjected to non-stationary excitation.Int. J. Nonlinear Mech. 15: 71–82zbMATHMathSciNetCrossRefGoogle Scholar
  67. Iwan W D, Spanos P T D 1978 Response envelope statistics for nonlinear oscillators with random excitation.J. Appl. Mech. 45: 170–174zbMATHGoogle Scholar
  68. Iwan W D, Whirley R G 1993 Nonstationary equivalent linearization of nonlinear continuous systems.Probab. Eng. Mech. 8: 273–280CrossRefGoogle Scholar
  69. Iwan W D, Yang I M 1972 Application of statistical linearization techniques to nonlinear multidegree of freedom systems.J. Appl. Mech. 39: 545–550zbMATHGoogle Scholar
  70. Iyengar R N 1975 Random vibration of a second order nonlinear elastic system.J. Sound Vib. 40: 155–165CrossRefzbMATHGoogle Scholar
  71. Iyengar R N 1986 A nonlinear system under combined periodic and random excitation.J. Stat. Phys. 44: 907–920MathSciNetCrossRefGoogle Scholar
  72. Iyengar R N 1988a Higher order linearization of nonlinear random vibration.Int. J. Nonlinear Mech. 23: 385–391MathSciNetCrossRefzbMATHGoogle Scholar
  73. Iyengar R N 1988b Stochastic response and stability of the Duffing oscillator under narrow band excitation.J. Sound. Vib. 126: 255–263MathSciNetCrossRefGoogle Scholar
  74. Iyengar R N 1989 Response of nonlinear systems to narrowband excitation.Struct. Safety 6: 177–185CrossRefGoogle Scholar
  75. Iyengar R N 1992 Approximate analysis of nonlinear systems under narrow band random excitation,Proceedings of IUTAM symposium on Nonlinear Stochastic Mechanics, Turin, Italy, pp. 309–320Google Scholar
  76. Iyengar R N, Dash P K 1976 Random vibration analysis of stochastic time varying systems.J. Sound. Vib 45: 69–89CrossRefzbMATHGoogle Scholar
  77. Iyengar R N, Dash P K 1978 Study of the random vibration of nonlinear systems by the Gaussian closure technique.J. Appl. Mech. 45: 393–399zbMATHGoogle Scholar
  78. Iyengar R N, Manohar C S 1991 Rocking response of rectangular blocks under random noise base excitation.Int. J. Nonlinear Mech. 26: 885–892CrossRefGoogle Scholar
  79. Jahedi A, Ahmadi G 1983 Application of Wiener-Hermite expansion to nonstationary random vibration of a Duffing oscillator.J. Appl. Mech. 50: 436–442zbMATHMathSciNetGoogle Scholar
  80. Jia W, Fang T 1987 Jump phenomena in coupled Duffing oscillators under random excitation.J. Acoust. Soc. Am. 81: 961–965CrossRefGoogle Scholar
  81. Johnson J P, Scott R A 1979 Extension of eigenfunction expansion solutions of a Fokker-Planck equation; 1: First order systems.Int. J. Nonlinear Mech. 14: 315–324zbMATHMathSciNetCrossRefGoogle Scholar
  82. Johnson J P, Scott R A 1980 Extension of eigenfunction expansion solutions of a Fokker-Planck equation; 2: Second order system.Int. J. Nonlinear Mech. 15: 41–56.zbMATHMathSciNetCrossRefGoogle Scholar
  83. Kapitanaik T 1985 Stochastic response with bifurcations to nonlinear Duffing’s oscillator.J. Sound Vib. 102: 440–441Google Scholar
  84. Kapitanaik T 1986 A property of a stochastic response with bifurcation of a nonlinear system.J. Sound Vib. 107: 177–180CrossRefGoogle Scholar
  85. Khabbaz G R 1965 Power spectral density of the response of a nonlinear system to random excitation.J. Acoust. Soc. Am. 38: 847–850CrossRefGoogle Scholar
  86. Khasminiskii R Z 1966 A limit theorem for the solutions of differential equations with random right hand sides.Theory Probab. Appl. 11: 390–406CrossRefGoogle Scholar
  87. Kimura K, Sakata M 1981 Nonstationary responses of a non-symmetric nonlinear system subjected to wide class of random excitation.J. Sound Vib. 76: 261–272zbMATHCrossRefGoogle Scholar
  88. Kimura K, Sakata M 1987 Nonstationary response analysis of a nonsymmetric nonlinear multidegree of freedom system to nonwhite random excitation.Proceedings of KSME/JSME Vibration Conference, Seoul, Korea, 180–189Google Scholar
  89. Koliopulos P K, Langley R S 1993 Improved stability analysis of the response of a Duffing oscillator under filtered white noise.Int. J. Nonlinear Mech. 28: 145–155zbMATHMathSciNetCrossRefGoogle Scholar
  90. Kozin F 1969 A survey of stability of stochastic systems.Automatica 5: 95–112zbMATHMathSciNetCrossRefGoogle Scholar
  91. Kozin F 1987 The method of statistical linearization for nonlinear stochastic vibrations. InNonlinear stochastic dynamic engineering systems, IUTAM symposium, Innsbruck (eds) F Ziegler, G I Schueller, pp. 45–56Google Scholar
  92. Langley R S 1985 A finite element method for the statistics of nonlinear random vibration.J. Sound. Vib. 101: 41–54zbMATHCrossRefGoogle Scholar
  93. Langley R S 1988a Application of the principle of detailed balance to the random vibration of nonlinear oscillators.J. Sound Vib. 125: 85–92MathSciNetCrossRefGoogle Scholar
  94. Langley R S 1988b An investigation of multiple solutions yielded by the equivalent linearization method.J. Sound Vib. 127: 271–281MathSciNetCrossRefGoogle Scholar
  95. Leng G, Sri Namachchivaya N S, Talwar S 1992 Robustness of nonlinear systems perturbed by external random excitation.J. Appl. Mech. 59: 1015–1022zbMATHMathSciNetGoogle Scholar
  96. Lennox W C, Kuak Y C 1976 Narrow band excitation of a nonlinear oscillator.J. Appl. Mech. 43: 340–344zbMATHGoogle Scholar
  97. Li Y, Kareem A 1993 Multivariate Hermite expansion of hydrodynamic drag loads on tension leg platforms.J. Eng. Mech. 119: 91–112CrossRefGoogle Scholar
  98. Lin Y K 1967Probabilistic theory of structural dynamics (New York: McGraw-Hill)Google Scholar
  99. Lin Y K 1986 Some observations on the stochastic averaging method.Probab. Eng. Mech. 1: 23–27CrossRefGoogle Scholar
  100. Lin Y K, Cai G Q 1988 Exact stationary response solution for second order nonlinear systems under parametric and external white noise excitations: Part II.J. Appl. Mech. 55: 702–705zbMATHMathSciNetGoogle Scholar
  101. Liu Q, Davies H G 1988 Application of non-Gaussian closure to the nonstationary response of a Duffing oscillator.Int. J. Nonlinear Mech. 23: 241–250zbMATHMathSciNetCrossRefGoogle Scholar
  102. Lutes L D, Shah V S 1973 Transient random response of bilinear oscillators.J. Eng. Mech. 99: 715–734Google Scholar
  103. Manning J E 1975 Response spectra for nonlinear oscillators.J. Eng. Ind. 97: 1223–1226Google Scholar
  104. Manohar C S 1989Random vibrations of limit cycle systems and stochastic strings. Ph D thesis, Department of Civil Egineering, Indian Inst. Sci., BangaloreGoogle Scholar
  105. Manohar C S, Iyengar R N 1990 Random vibration of a limit cycle system, Report No. 1-1990, Structural Engineering Laboratory, Indian Inst. Sci., BangaloreGoogle Scholar
  106. Manohar C S, Iyengar R N 1991a Entrainment of Van der Pol’s oscillator in presence of combined periodic excitation and noise.Int. J. Nonlinear Mech. 26: 679–786zbMATHCrossRefGoogle Scholar
  107. Manohar C S, Iyengar R N 1991b Narrow band random excitation of a limit cycle system.Arch. Appl. Mech. 61: 133–141zbMATHGoogle Scholar
  108. Manohar C S, Iyengar R N 1993 Probability distribution of the eigenvalues of systems governed by stochastic wave equation.Probab. Eng. Mech. 8: 57–64CrossRefGoogle Scholar
  109. Manohar C S, Iyengar R N 1994 Free vibration analysis of stochastic strings.J. Sound Vib. 176(1): 35–48zbMATHCrossRefGoogle Scholar
  110. Mayfield W W 1973 A sequence solution to the Fokker-Planck equation.IEEE Trans. Inf. Theory IT19: 165–175CrossRefGoogle Scholar
  111. Naess A, Johnsen J M 1993 Response statistics of nonlinear, complaint offshore structures by the path integral solution method.Probab. Eng. Mech. 8: 91–106CrossRefGoogle Scholar
  112. Orabi I I, Ahmadi G 1987a A functional series expansion method for response analysis of nonlinear systems subjected to random excitations.Int. J. Nonlinear Mech. 22: 451–465zbMATHMathSciNetCrossRefGoogle Scholar
  113. Orabi I I, Ahmadi G 1987b Nonstationary response analysis of a Duffing oscillator by the Wiener-Hermite expansion method.J. Appl. Mech. 54: 434–440zbMATHMathSciNetGoogle Scholar
  114. Orabi I I, Ahmadi G 1988 Response of the Duffing oscillator to a non-Gaussian random excitation.J. Appl. Mech. 55: 740–743zbMATHMathSciNetGoogle Scholar
  115. Pawleta H, Socha L 1992 Cumulant neglect closure of nonstationary solutions of stochastic system.J. Appl. Mech. 57: 776–779MathSciNetGoogle Scholar
  116. Pawula R F 1967 Generalization and extension of the Fokker-Planck-Kolmogorov equations.IEEE Trans. Inf. Theory IT-13: 33–41MathSciNetCrossRefGoogle Scholar
  117. Payne H J 1968 An approximate method for nearly linear, first order stochastic differential equations.Int. J. Control 7: 451–463zbMATHCrossRefGoogle Scholar
  118. Pi H N, Ariaratnam S T, Lennox W C 1971 First passage time for the snap-through of a shell-type structure.J. Sound. Vib. 14: 375–384CrossRefGoogle Scholar
  119. Pradlwarter H J 1989 Non-Gaussian linearization: An efficient tool to analyze nonlinear MDOF systems.Proceedings, SMiRTM 10: 19–30Google Scholar
  120. Pradlwarter H J, Schueller G I, Chen X W 1988 Consideration of non-Gaussian response properties by use of stochastic equivalent linearization.Proceedings, 3rd International conference on recent advances in structural dynamics, Southampton, pp. 737–752Google Scholar
  121. Red-Horse J R, Spanos P D 1992 A generalization to stochastic averaging in random vibration.Int. J. Nonlinear Mech. 27: 85–101zbMATHMathSciNetCrossRefGoogle Scholar
  122. Richard K, Anand G V 1983 Nonlinear resonance in strings under narrow band random excitation, Part I: Planar response and stability.J. Sound Vib. 86: 85–98zbMATHMathSciNetCrossRefGoogle Scholar
  123. Ripley B D 1987Stochastic simulation (New York: Wiley)zbMATHGoogle Scholar
  124. Risken H 1989Fokker-Planck equation: Methods of solution and applications 2nd edn (Berlin: Springer Verlag)zbMATHGoogle Scholar
  125. Roberts J B 1976 First passage probability for nonlinear oscillators.J. Eng. Mech. 102: 851–866Google Scholar
  126. Roberts J B 1978 The energy envelope of a randomly excited nonlinear oscillator.J. Sound. Vib. 60: 177–185zbMATHCrossRefGoogle Scholar
  127. Roberts J B 1981 Response of nonlinear mechanical systems to random excitation. Part I: Markov Methods.Shock Vib. Dig. 13(4): 17–28CrossRefGoogle Scholar
  128. Roberts J B 1982 A stochastic theory for nonlinear ship rolling in irregular seas.J. Ship Res. 26: 229–245Google Scholar
  129. Roberts J B 1986a First passage probabilities for randomly excited systems: Diffusion methods.Probab. Eng. Mech. 1: pp. 66–81CrossRefGoogle Scholar
  130. Roberts J B 1986b First passage time for randomly excited nonlinear oscillators.J. Sound Vib. 109: 33–50CrossRefGoogle Scholar
  131. Roberts J B 1991 Multiple solutions generated by statistical linearization and their physical significance.Int. J. Nonlinear Mech. 26: 945–960CrossRefGoogle Scholar
  132. Roberts J B, Spanos P T D 1986 Stochastic averaging: An approximate method of solving random vibration problems.Int. J. Nonlinear Mech. 21: 111–134zbMATHMathSciNetCrossRefGoogle Scholar
  133. Roberts J B, Spanos P T D 1990Random vibration and statistical linearization (Chichester: John Wiley and Sons)zbMATHGoogle Scholar
  134. Roy R V, Spanos P D 1991 Pade-type approach to nonlinear random vibration analysis.Probab. Eng. Mech. 6: 119–128CrossRefGoogle Scholar
  135. Roy R V, Spanos P D 1993 Power spectral density of nonlinear system response: the recursion method.J. Appl. Mech. 60: 358–365zbMATHGoogle Scholar
  136. Sakata M, Kimura K 1980 Calculation of the nonstationary mean square response of a nonlinear system subjected to nonwhite excitation.J. Sound Vib. 73: 333–343zbMATHCrossRefGoogle Scholar
  137. Sancho N G F 1970 On the approximate moment equations of a nonlinear stochastic differential equation.J. Math. Anal. Appl. 29: 384–391zbMATHMathSciNetCrossRefGoogle Scholar
  138. Sato K, Yamamoto S, Kamada O, Takatsu N 1985 Jump phenomena in gear system to random excitation.Bull. JSME, 28: 1271–1278Google Scholar
  139. Schetzen M 1980The Volterra and Wiener theories of nonlinear systems (New York: John Wiley and Sons)zbMATHGoogle Scholar
  140. Schueller G I, Pradlwarter H J, Bucher C G 1991 Efficient computational procedures for reliability estimates of mdof systems.Int. J. Nonlinear Mech. 26: 961–974zbMATHCrossRefGoogle Scholar
  141. Shimogo T 1963a Nonlinear vibrations of systems with random loading.Bull. JSME 6: 44–52MathSciNetGoogle Scholar
  142. Shimogo T 1963b Unsymmetrical nonlinear vibration of systems with random loading.Bull. JSME 6: 53–59MathSciNetGoogle Scholar
  143. Shinozuka M, Deodatis G 1991 Simulation of stochastic processes by spectral representation.Appl. Mech. Rev. 44: 191–203MathSciNetGoogle Scholar
  144. Sinitsyn I N 1974 Methods of statistical linearization (survey).Autom. Remote Control 35: 765–776MathSciNetGoogle Scholar
  145. Sobczyk K, Trebicki J 1990 Maximum entropy principle in stochastic dynamics.Probab. Eng. Mech. 5(3):Google Scholar
  146. Sobczyk K, Trebicki J 1992 Analysis of stochastic systems via maximum entropy principle.Proceedings of IUTAM symposium on Nonlinear Stochastic Mechanics. Turin, Italy pp. 485–497Google Scholar
  147. Socha L, Soong T T 1991 Linearization in analysis of nonlinear stochastic systems.Appl. Mech. Rev. 44: 399–422MathSciNetGoogle Scholar
  148. Solomos G P, Spanos P T D 1984 Oscillator response to nonstationary excitation.J. Appl. Mech. 51: 907–912zbMATHMathSciNetGoogle Scholar
  149. Soni S R, Surendran K 1975 Transient response of nonlinear systems to stationary random excitation.J. Appl. Mech. 42: 891–893Google Scholar
  150. Soong T T 1973Random differential equations in science and engineering. (New York: Academic Press)zbMATHGoogle Scholar
  151. Spanos P T D 1980a Numerical simulations of a Van der Pol oscillator.Comput. Math. Appl. 6: 135–145zbMATHMathSciNetCrossRefGoogle Scholar
  152. Spanos P T D 1980b Formulation of stochastic linearization for symmetric or asymmetric mdof nonlinear systems.J. Appl. Mech. 47: 209–211zbMATHGoogle Scholar
  153. Spanos P T D 1981a Stochastic linearization in structural dynamics.Appl. Mech. Rev. 34: 1–8MathSciNetGoogle Scholar
  154. Spanos P T D 1981b Monte Carlo simulations of response of nonsymmetric dynamic system to random excitations.Comput. Struct. 13: 371–376zbMATHCrossRefGoogle Scholar
  155. Spanos P T D 1983 Survival probability of nonlinear oscillator subjected to broad band random disturbances.Int. J. Nonlinear Mech. 17: 303–317MathSciNetCrossRefGoogle Scholar
  156. Spanos P T D 1986 Analysis of block random rocking.Soil Dyn. Earthquake Eng. 5: 178–184CrossRefGoogle Scholar
  157. Spanos P T D, Iwan W D 1978 On the existence and uniqueness of solutions generated by equivalent linearization.Int. J. Nonlinear Mech. 13: 71–78zbMATHMathSciNetCrossRefGoogle Scholar
  158. Spanos P T D, Lutes L D 1987 A primer of random vibration techniques in structural engineering.Shock Vib. Dig. 19(4): 3–9CrossRefGoogle Scholar
  159. Spanos P D, Mignolet M P 1989 ARMA Monte Carlo simulation in probabilistic structure analysis.Shock Vib. Dig. 21(11): 3–14CrossRefGoogle Scholar
  160. Spanos P D, Donley M G 1991 Equivalent statistical quadrization for nonlinear systems.J. Eng. Mech. 117: 1289–1310CrossRefGoogle Scholar
  161. Spencer B F, Bergman L A 1985 The first passage problem in random vibration for a simple hysteretic oscillator. Technical Report AAE 85-8, University of Illinois, UrbanaGoogle Scholar
  162. Sri Namachchivaya N S 1991 Co-dimension two bifurcations in the presence of noise.J. Appl. Mech. 58: 259–265zbMATHMathSciNetGoogle Scholar
  163. Sri Namachchivaya N S, Leng G 1990 Equivalence of stochastic averaging and stochastic normal forms.J. Appl. Mech. 57: 1011–1017zbMATHMathSciNetGoogle Scholar
  164. Sri Namachchivaya N S, Lin Y K 1991 Method of stochastic normal forms.Int. J. Nonlinear Mech. 26: 931–944zbMATHMathSciNetCrossRefGoogle Scholar
  165. Stratonovich R L 1963, 1967Topics in the theory of a random noise (New York: Gordon and Breach) vols. 1 and 2Google Scholar
  166. Sun J Q, Hsu C S 1987 Cumulant neglect closure method for nonlinear systems under random excitations.J. Appl. Mech. 54: 649–655zbMATHGoogle Scholar
  167. Sun J Q, Hsu C S 1988 First-passage time probability of nonlinear stochastic systems by generalized cell mapping method.J. Sound Vib. 124: 233–248MathSciNetCrossRefGoogle Scholar
  168. Sun J Q, Hsu C S 1990 The generalized cell mapping method in nonlinear random vibration based upon short-time Gaussian approximation.J. Appl. Mech. 57: 1018–1025MathSciNetGoogle Scholar
  169. Sunahara Y, Asakura T, Marita Y 1977 On the asymptotic behaviour of nonlinear stochastic dynamical systems considering initial states. InStochastic problems in dynamics (ed.) B L Clarkson (London: Pitman) pp 138–175Google Scholar
  170. Taylor R E, Rajagopalan A 1982 Dynamics of offshore structures, Part I: Perturbation analysis.J. Sound Vib. 83: 401–416zbMATHGoogle Scholar
  171. To C W S, Li D M 1991 Equivalent nonlinearization of nonlinear systems to random excitation.Probab. Eng. Mech. 6: 184–192CrossRefGoogle Scholar
  172. Toland R H, Yang C Y 1971 Random walk model for first passage probability.J. Eng. Mech. 97: 791–906Google Scholar
  173. Toland R H, Yang C Y, Hsu C K C 1972 Nonstationary random vibration of nonlinear structures.Int. J. Nonlinear Mech. 7: 395–406CrossRefzbMATHGoogle Scholar
  174. Tylikowski A, Marowski W 1986 Vibration of a nonlinear single degree of freedom system due to Poissonian impulse excitation.Int. J. Nonlinear Mech. 21: 229–238zbMATHMathSciNetCrossRefGoogle Scholar
  175. Vaicatis R, Dowell E H, Ventres C S 1974 Nonlinear panel response by a Monte Carlo approach.AIAA J. 12: 685–691Google Scholar
  176. Vickery B J, Basu R I 1983 Across wind vibrations of structures of circular cross section Part I: Development of a mathematical model for two dimensional condition.J. Wind Eng. Ind. Aerodyn. 12: 49–97CrossRefGoogle Scholar
  177. Wehner M F, Wolfer W G 1983 Numerical evaluation of path-integral solutions to Fokker-Planck equations.Phys. Rev. A27: 2663–2670Google Scholar
  178. Wen Y K 1975 Approximate method for nonlinear random vibration.J. Eng. Mech. 101: 389–401Google Scholar
  179. Wen Y K 1976 Method for random vibration of hysteretic system.J. Eng. Mech. 102: 249–263Google Scholar
  180. Wen Y K 1980 Equivalent linearization for hysteretic systems under random excitation.J. Appl. Mech. 47: 150–154zbMATHCrossRefGoogle Scholar
  181. Wen Y K 1989 Methods of random vibration for inelastic structures.Appl. Mech. Rev. 42(2): 39–52CrossRefGoogle Scholar
  182. Wilcox R M, Bellman R 1970 Truncation and preservation of moment properties for Fokker-Planck moment equations.J. Math Anal. Appl. 32: 532–542zbMATHMathSciNetCrossRefGoogle Scholar
  183. Wu W F, Lin Y K 1984 Cumulant neglect closure for nonlinear oscillators under parametric and external excitations.Int. J. Nonlinear Mech. 19: 349–362zbMATHMathSciNetGoogle Scholar
  184. Yong Y, Lin Y K 1987 Exact stationary response solution for second order nonlinear systems under parametric and external white noise excitation.J. Appl. Mech. 54: 414–418zbMATHMathSciNetGoogle Scholar
  185. Zhu W Q 1983 Stochastic averaging of the energy envelope of nearly Lyapunov systems. InRandom vibrations and reliability. Proceedings of IU TAM Symposium (ed.) K Hennig Frankfurt (Berlin: Akademie-Verlag) pp. 347–357Google Scholar
  186. Zhu W Q 1988 Stochastic averaging methods in random vibrations.Appl. Mech. Rev. 41: 189–199Google Scholar
  187. Zhu W Q, Lin Y K 1991 Stochastics averaging of energy envelope.J. Eng. Mech 117: 1890–1905CrossRefGoogle Scholar
  188. Zhu W Q, Yu J S 1987 On the response of Van der Pol oscillator to white noise excitation.J. Sound. Vib. 117: 421–431MathSciNetCrossRefGoogle Scholar
  189. Zhu W Q, Yu J S 1989 The equivalent nonlinear system method.J. Sound Vib. 129: 385–395MathSciNetCrossRefGoogle Scholar
  190. Zhu W Q, Cai G Q, Lin Y K 1990 On exact stationary solutions of stochastically perturbed Hamiltonian systems.Probab. Eng. Mech. 5: 84–87CrossRefGoogle Scholar
  191. Zhu W Q, Lu M Q, Wu Q T 1993 Stochastic jump and bifurcation of a Duffing oscillator under narrow-band excitation.J. Sound Vib. 165: 285–304zbMATHCrossRefGoogle Scholar
  192. Zhu W Q, Yu M Q, Lin Y K 1994 On improved stochastic averaging procedure.Probab Eng. Mech. 9: 203–212CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1995

Authors and Affiliations

  • C S Manohar
    • 1
  1. 1.Department of Civil EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations