In Vitro – Plant

, Volume 30, Issue 4, pp 175–180 | Cite as

In vitro selection for salt tolerance in crop plants: Theoretical and practical considerations

  • Moshe Tal
Invited Review


In recent years attempts have been made to supplement traditional breeding for the production of salt-tolerant plants with variability existing in cell culture. The potential causes suggested as an explanation for the limited success of the in vitro approach include: a) lack, or loss during selection, of regeneration capability; b) the development of epigenetically adapted cells; c) lack of correlation between the mechanisms of tolerance operating in cultured cells and mechanisms that operate in cells in the intact plant; and d) multigenicity of salt tolerance. The recent successful production of healthy, fertile, and genetically stable salt-tolerant regenerants from cells obtained from highly morphogenic explants which are selected early in culture (using one-step or short-term strategies) for salt tolerance, together with the demonstration that salt-sensitive plants can become tolerant by mutations in one or few genes, suggest that some of the potential limitations can be overcome and that some of them may not exist at all.

Key words

salt tolerance in vitro selection plants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, G. H. Inheritance of the capacity for chloride inclusion and exclusion by soybean. Crop. Sci. 9:697–698; 1969.CrossRefGoogle Scholar
  2. Alldridge, N. A. Anomalous vessel elements in wilty dwarf tomato. Bot. Gaz. 125:138–142; 1964.CrossRefGoogle Scholar
  3. Amzallag, G. N.; Lerner, H. R.; Poljakoff-Mayber, A. Induction of increased salt tolerance inSorghum bicolor by NaCl pretreatment. J. Exp. Bot. 71:29–34; 1990.CrossRefGoogle Scholar
  4. Ball, S. G. Molecular basis of somaclonal variation. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 11. Somaclonal variation in crop improvements. Berlin: Springer-Verlag; 1990: 134–152.Google Scholar
  5. Blum, A. Plant breeding for stress environments. Boca Raton, FL: CRC Press; 1988.Google Scholar
  6. Bressan, R. A.; Singh, N. K.; Handa, A. K., et al. Stable and unstable tolerance to NaCl in cultured tobacco cells. In: Freeling, M., ed. Plant genetics: proceedings of the third annual ARCO plant cell research institute—UCLA symposium on plant biology. New York: A. R. Liss; 1985;755–769.Google Scholar
  7. Chandler, S. F.; Thorpe, T. A. Variation from plant tissue cultures: biotechnological application to improving salinity tolerance. Biotechnol. Adv. 4:117–135; 1986.PubMedCrossRefGoogle Scholar
  8. Chandler, S. F.; Vasil, I. K. Selection and characterization of NaCl tolerant cells from embryogenic cultures ofPennisetam purpureum Schum. (Napir grass). Plant Sci. Lett. 37:157–164; 1984.CrossRefGoogle Scholar
  9. Cheeseman, J. M. Mechanisms of salinity tolerance in plants. Plant Physiol. 87:547–550; 1988.PubMedGoogle Scholar
  10. Collin, H. A.; Dix, P. J. Culture systems and selection procedures. In: Dix, P. J., ed. Plant cell line selection procedures and applications. New York: VCH Weinheim; 1990:3–18.Google Scholar
  11. Cushman, J. C.; DeRocher, E. J.; Bohnert, H. J. Gene expression during adaptation to salt stress. In: Katterman, F. R., ed. Environmental injury to plants. San Diego, CA: Academic Press; 1990: 173–203.Google Scholar
  12. Dix, P. J. The role of mutant cell lines in studies on environmental stress tolerance: an assessment. Plant J. 3:309–313; 1993.Google Scholar
  13. Dracup, M. Increasing salt tolerance of plants through cell culture requires greater understanding of tolerance mechanisms. Aust. J. Plant Physiol. 18:1–15; 1991.Google Scholar
  14. Epstein, E.; Rains, D. W. Advances in salt tolerance. Plant Soil 99:17–29; 1987.CrossRefGoogle Scholar
  15. Flowers, T. J.; Lachno, D. R.; Flowers, S. A., et al. Some effects of sodium chloride on cells of rice culturedin vitro. Plant Sci. Lett. 39:205–211; 1985.CrossRefGoogle Scholar
  16. Forster, B. P. Genetic engineering for stress tolerance in theTriticeae. Proc. R. Soc. Edinb. 99B:89–106; 1992.Google Scholar
  17. Forster, B. P.; Phillips, M. S.; Miller, T. E., et al. Chromosome location of genes controlling tolerance to salt (NaCl) and vigour inHordeum vulgare andH. chilense. Heredity 65:99–107; 1990.Google Scholar
  18. Forster, B. P.; Pakniyat, H.; Macaulay, W., et al. Variation in the leaf sodium content of theHordeum vulgare (barley) cultivar Maythorpe and its derived mutant cv. Golden Promise. Heredity 73:249–253; 1994.Google Scholar
  19. Freytag, A. M.; Wrather, J. A.; Erichsen, A. W. Salt tolerance sugarbeet progeny from tissue cultures challenged with multiple salts. Plant Cell Rep. 8:647–650; 1990.CrossRefGoogle Scholar
  20. Futuyma, D. J. Evolutionary biology, 2nd ed. Sunderland, MA: Sinauer Associates, Inc. Publishers; 1986.Google Scholar
  21. Galiba, G.; Simon-Sarkadi, L.; Kocsy, G., et al. Possible chromosomal location of genes determining the osmoregulation of wheat. Theor. Appl. Genet. 85:415–418; 1992.CrossRefGoogle Scholar
  22. Gulati, A.; Jaiwal, P. K. Selection and characterization of mannitol-tolerant callus lines ofVigna radiata (L.) Wilczak. Plant Cell Tissue Organ Cult. 34:35–41; 1993.CrossRefGoogle Scholar
  23. Hagemann, M.; Zuther, E. Selection and characterization of mutants ofCyanobacterium Synechocystis sp. PCC 6803 unable to tolerate high salt concentrations. Arch. Microbiol. 158:429–434; 1992.CrossRefGoogle Scholar
  24. Hasegawa, P. M.; Binzel, M. L.; Reuveni, M., et al. Physiological and molecular mechanisms of ion accumulations and compartmentations contributing to salt adaptation of plant cells. In: Bennett, A. B.; O'Neill, S. D., eds. Horticultural biotechnology. New York: Wiley-Liss; 1990:295–304.Google Scholar
  25. Hickok, L. G.; Vogelien, D. L.; Varne, T. R. Selection of a mutation conferring high NaCl tolerance to gametophytes of Ceratopteris. Theor. Appl. Genet. 81:293–300; 1991.CrossRefGoogle Scholar
  26. Hoffmann, A. A.; Parsons, P. A. Evolutionary genetics and environmental stress. Oxford, England: Oxford Science Publications; 1991.Google Scholar
  27. Hurkman, W. J. Effect of salt stress on plant gene expression: a review. Plant Soil 46:145–151; 1992.CrossRefGoogle Scholar
  28. Ibrahim, K. M.; Collins, J. C.; Collin, H. A. Characterization of progeny ofColeus blumei following anin vitro selection for salt tolerance. Plant Cell Tissue Organ Cult. 28:139–145; 1992.CrossRefGoogle Scholar
  29. Jia, Z. P.; McCullough, N.; Martel, R., et al. Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast. EMBO J. 11:1631–1640; 1992.PubMedGoogle Scholar
  30. Jain, R. K.; Jain, S.; Nainawatee, H. S., et al. Salt-tolerance inBrassica juncea L. I.In vitro selection, agronomic evaluation and genetic stability. Euphytica 48:141–152; 1990.CrossRefGoogle Scholar
  31. Kirti, P. B.; Hadi, S.; Kumar, P. A., et al. Production of sodium-chloride-tolerantBrassica juncea plants byin vitro selection at the somatic embryo level. Theor. Appl. Genet. 83:233–237; 1991.CrossRefGoogle Scholar
  32. Koornneef, M.; Jorna, M. L.; Brinkhorst-van der Swan, D. L. C., et al. The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberelin sensitive lines ofArabidopsis thaliana (L.) Heyah. Theor. Appl. Genet. 61: 385–393; 1982.Google Scholar
  33. Kueh, J. S. H.; Bright, S. W. J. Biochemical and genetical analyses of three proline-accumulating barley mutants. Plant Sci. Lett. 27: 233–241; 1982.CrossRefGoogle Scholar
  34. Langridge, J. An osmotic mutant ofArabidopsis thaliana. Aust. J. Biol. Sci. 11:457–470; 1958.Google Scholar
  35. Lebrun, L.; Rajasekaran, K.; Mullins, M. G. Selectionin vitro for NaCl-tolerance inVitis rupestris Scheele. Ann. Bot. 56:733–739; 1985.Google Scholar
  36. Lehle, F. R.; Kahn, R. A.Arabidopsis mutant with enhanced NaCl tolerance. In: Schweizer, D.; Peuker, K.; Loidl, J., eds. Fourth Intern. Conf.Arabidopsis Research, Inst. Cytology and Genetics, University of Vienna, Vienna, 1990. [Published by the meeting organizers.]Google Scholar
  37. Lu, D. B.; Scars, R. G.; Paulsen, G. M. Increasing stress resistance byin vitro selection for abscisic acid insensitivity in wheat. Crop. Sci. 29:939–943; 1989.CrossRefGoogle Scholar
  38. Macnair, M. R.; Cumbs, Q. J.; Meharg, A. A. The genetics of arsenate tolerance in Yorkshire fog,Holcus lanatus L. Heredity 69:325–335; 1992.Google Scholar
  39. Mahon, J. D. Limitations to the use of physiological variability in plant breeding. Can. J. Plant Sci. 63:11–21; 1983.CrossRefGoogle Scholar
  40. McCue, K. F.; Hanson, A. D. Drought and salt tolerance: towards understanding and application. Trends Biotech. 8:358–362; 1990.CrossRefGoogle Scholar
  41. McHugen, A.; Swartz, M. A tissue culture derived salt-tolerant line of flax (Linum usitatissimum). J. Plant Physiol. 117:109–117; 1984.Google Scholar
  42. McNeilly, T. Selection and breeding for salinity tolerance in cross species. A case for optimism? Acta Oecol. 11:595–610; 1990.Google Scholar
  43. Meredith, C. P. Selecting better crops from cultured cells. In: Gustafson, J. P., ed. Gene manipulation in plant improvement. 16th Stadler Genetics Symposium. New York: Plenum Press; 1984:503–528.Google Scholar
  44. Morgan, J. M. A gene controlling differences in osmoregulation in wheat. Aust. J. Plant Physiol. 18:249–257; 1991.CrossRefGoogle Scholar
  45. Nabors, M. W. Increasing salt and drought tolerance of crop plants. In: Randall, D. D.; Blevins, D. B.; Larson, R. L., et al. eds. Current topics in plant biochemistry and physiology, vol. 2. Columbia, MO: University of Missouri; 1983:167–186.Google Scholar
  46. Nabors, M. W. Environmental stress resistance. In: Dix, P. J., ed. Plant cell line selection procedures and applications. New York: VCH Weinheim; 1990:167–186.Google Scholar
  47. Noble, C. L.; Rogers, M. E. Arguments for the use of physiological criteria for improving the salt tolerance in crops. Plant Soil 146:99–107; 1992.CrossRefGoogle Scholar
  48. Norlyn, J. D.; Epstein, E. Variability in salt tolerance of four Triticale lines at germination and emergence. Crop. Sci. 24:1090–1092; 1984.CrossRefGoogle Scholar
  49. O'Connor, B. J.; Robertson, A. J.; Gusta, L. V. Differential stress tolerance and cross adaptation in a somaclonal variant of flax. J. Plant Physiol. 139:32–36; 1991.Google Scholar
  50. Oertli, J. J. Extracellular salt accumulation, a possible mechanism of salt injury in plants. Agrochemica 12:461–469; 1968.Google Scholar
  51. Parry, A. D.; Blonstein, A. D.; Babiano, M. J., et al. Abscisic-acid metabolism in a wilty mutant ofNicotiana plumbaginifolia. Planta 183:237–243; 1991.CrossRefGoogle Scholar
  52. Postlethwait, S. N.; Nelson, O. E. A chemically wilted mutant of maize. Am. J. Bot. 44:628–633; 1957.CrossRefGoogle Scholar
  53. Quarrie, S. A. Droopy: a wilty mutant of potato deficient in abscisic acid. Plant Cell Environ. 5:23–26; 1982.Google Scholar
  54. Rains, D. W.; Croughan, S. S.; Croughan, T. P. Isolation and characterization of mutant cell lines and plants: salt tolerance. In: Vasil, I. K., ed. Cell culture and somatic cell genetics of plants, vol. 3. Orlando, FL: Academic Press; 1986:537–547.Google Scholar
  55. Rathinasabapathi, B.; Gage, D. A.; Mackill, D. J., et al. Cultivated and wild species do not accumulate glycinebitaine due to defficiencies in two biosynthetic steps. Crop. Sci. 33:534–538; 1993.CrossRefGoogle Scholar
  56. Saleki, R.; Young, P. G.; Lefebvre, D. D. Mutants ofArabidopsis thaliana capable of germination under saline conditions. Plant Physiol. 101:839–845; 1993.PubMedGoogle Scholar
  57. Saranga, Y.; Cahaner, A.; Zamir, D., et al. Breeding tomatoes for salt tolerance: inheritance of salt tolerance and related traits in interspecific population. Theor Appl. Genet. 84:390–396; 1992.CrossRefGoogle Scholar
  58. Scandalios, I. G., ed. Genomic responses to environmental stress: advances in genetics, vol. 28. San Diego, CA: Academic Press; 1990.Google Scholar
  59. Shannon, M. C. Principles and strategies in breeding for high salt tolerance. Plant Soil 89:227–241; 1985.CrossRefGoogle Scholar
  60. Spiker, S. Plant chromatin structure. Ann. Rev. Plant Physiol. 36:235–253; 1985.Google Scholar
  61. Sumaryati, S.; Negrutin, I.; Jacobs, M. Characterization and regeneration of salt- and water-stress mutants from protoplast culture ofNicotiana plumbaginifolia (Viviani). Theor. Appl. Genet. 83:613–619; 1992.CrossRefGoogle Scholar
  62. Sutka, J.; Snape, J. W. Location of a gene for frost resistance on chromosome 5A of wheat. Euphytica 42:41–44; 1989.CrossRefGoogle Scholar
  63. Sykes, S. R. The inheritance of salt exclusion in woody perennial fruit species. Plant Soil 146:123–129; 1992.CrossRefGoogle Scholar
  64. Taeb, M.; Koebner, R. M. D.; Forster, B. P., et al. Association between genes controlling flowering time and shoot sodium accumulation in theTriticeae. Plant Soil 146:117–121; 1992.CrossRefGoogle Scholar
  65. Tal, M. Physiological genetics of salt resistance in higher plants: studies on the level of the whole plant and isolated organs, tissues and cells. In: Staples, R. C.; Toenniessen, G. H., eds. Salinity tolerance on plants. Strategies for crop improvement. New York: Wiley & Sons; 1984:301–320.Google Scholar
  66. Tal, M. Genetics of salt tolerance in higher plants: theoretical and practical considerations. Plant Soil 89:199–226; 1985.CrossRefGoogle Scholar
  67. Tal, M. Somaclonal variation for salt resistance. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 11. Somaclonal variation in crop improvement. Berlin: Springer-Verlag; 1990: 236–257.Google Scholar
  68. Tal, M.In vitro methodology for increasing salt tolerance in crop plants. Acta Hortic. 336:69–79; 1993.Google Scholar
  69. Tal, M.; Benzioni, A. Ion imbalance inCapsicum annuum, Scabrous diminutive, a wilty mutant of pepper. I. Sodium fluxes. J. Exp. Bot. 28:1337–2341; 1977.CrossRefGoogle Scholar
  70. Tal, M.; Nevo, Y. Abnormal stomatal behavior and root resistance, and hormonal imbalance in three wilty mutants of tomato. Biochem. Genet. 8:291–300; 1973.PubMedCrossRefGoogle Scholar
  71. Tal, M.; Witztum, A.; Shifriess, C. Abnormal stomatal behavior and leaf anatomy inCapsicum annuum, scabrous diminutive, a wilty mutant of pepper. Ann. Bot. 38:983–988; 1974.Google Scholar
  72. Tal, M.; Eshel, A.; Witztum, A. Abnormal stomatal behaviour and ion imbalance inCapsicum scabrous diminutive. J. Exp. Bot. 27:953–960; 1976.CrossRefGoogle Scholar
  73. Tarczynski, M. C.; Jensen, R. G.; Bohnert, H. J. Stress protection of transgenic tobacco by production of the osmolyte, mannitol. Science 259:508–510; 1993.PubMedCrossRefGoogle Scholar
  74. Vajrabhaya, M.; Thanapaisai, T.; Vajrabhaya, T. Development of salt tolerant lines of KDML and LPT rice cultivars through tissue culture. Plant Cell Rep. 8:411–414; 1989.CrossRefGoogle Scholar
  75. Walker-Simmons, M.; Kudrna, D. A.; Warner, R. L. Reduced accumulation of ABA during water stress in a molybdenum cofactor mutant of barley. Plant Physiol. 90:728–733; 1989.PubMedCrossRefGoogle Scholar
  76. Wang, T. L.; Donkin, M. E.; Martin, E. S. The physiology of a wilty pea: abscisic acid production under water stress. J. Exp. Bot 35:1222–1232; 1984.CrossRefGoogle Scholar
  77. Winicov, I. Characterization of salt tolerant alfalfa (Medicago sativa L.) plants regenerated from salt tolerant cell lines. Plant Cell Rep. 10:561–564; 1991.CrossRefGoogle Scholar
  78. Winicov, I. Gene expression in relation to salt tolerance. In: Basra, A. S., ed. Stress-induced gene expression in plants. Harwood: Academic Publishers; 1993:61–85.Google Scholar

Copyright information

© Society for In Vitro Biology 1994

Authors and Affiliations

  • Moshe Tal
    • 1
  1. 1.Department of Life SciencesBen Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations