Benefits ofin vitro “biotization” of plant tissue cultures with microbial inoculants

  • Jerzy Nowak
Micropropagation Review

Summary

In vitro coculture of plant tissue explants with beneficial microorganisms induces developmental and metabolic changes in the derived plantets which enhance their tolerance to abiotic and biotic stresses. The induced resistance response caused by the inoculants is referred to as “biotization.” There is enough experimental evidence with bacteria (bacterization) and vesicular arbuscular mycorrhiza (mycorrhization) inoculations to recommend utilization of this technology in commercial micropropagation. The paper reviews literature on this topic, outlines other uses and potential uses ofin vitro plant-microbial cocultures, and discusses their current constraints.

Key words

micropropagation bacterization mycorrhization stress resistance responses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baccou, J. C. Effect of photosynthesis on the secondary metabolism of cell culture. In: Carré, F.; Chagvardieff, P., ed. Ecophysiology and photosyntheticin vitro cultures. Aix-en-Provence (France): CEA: 1995:71–85.Google Scholar
  2. Balachandran, S.; Hurry, V. M.; Kelley, S. E., et al. Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from perspective of photosynthesis. Physiol. Plant. 100:203–213; 1997.CrossRefGoogle Scholar
  3. Balla, I.; Vértesy, J.; Köves-Pechy, K., et al. Acclimation results of micropropagated black locust (Robinia pseudoacacia L.) improved by use of microorganisms. In: Cassells, A. L., ed. Pathogen and microbial contamination management in micropropagation. Dordrecht (NL): Kluwer Acad. Publ.; 1997:351–354.Google Scholar
  4. Bécard, G.; Fortin, J. A. Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol. 108:211–218; 1988.CrossRefGoogle Scholar
  5. Bécard, G.; Piché, Y. Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl. Envir. Microbiol. 55:2320–2325; 1989.Google Scholar
  6. Benhamou, N. Elicitor-induced plant defence pathways. TIPS 1:233–240; 1996.Google Scholar
  7. Benhamou, N.; Kloepper, J. W.; Quadt-Hallman, A., et al. Induction of defence-related ultra-structural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 112:919–929; 1996.PubMedGoogle Scholar
  8. Bensalim, S.; Nowak, J.; Asiedu, S. K. Temperature and pseudomonad bacterium effects onin vitro andex vitro performance of 18 clones of potato. Am. Potato J. (in press); 1998.Google Scholar
  9. Bethlenfalvay, G. J.; Andrade, G.; Azcón-Aquilar, C. Plant and soil responses to mycorrhizal fungi and rhizobacteria in nodulated or nitrate-fertilized peas (Pisum sativum L.). Biol. Fertil. Soils 24:164–168;1997.CrossRefGoogle Scholar
  10. Bove, J. M.; Garnier, M. Walled and wall-less eubacteria from plants: sievetube-restricted plant pathogens. In: Cassells, A., ed. Pathogen and microbial contamination management in micropropagation. Dordrecht (NL): Kluwer Academic Publ.; 1997:45–60.Google Scholar
  11. Brown, M. E. Seed and root bacterization. Annu. Rev. Phytopathol. 12:181–197; 1974.CrossRefGoogle Scholar
  12. Burns, J. A.; Schwarz, O. J. Bacterial stimulation of adventitious rooting onin vitro cultured slash pine (Pinus eliotti Engelm.) seedling explants. Plant Cell Rep. 15:405–408; 1996.CrossRefGoogle Scholar
  13. Cassells, A. C. Problems in tissue culture: culture contamination. In: Debergh, P. C.; Zimmerman, R. M., ed. Micropropagation, technology and application. Dordrecht: Kluwer Acad. Publ.; 1991:31–44.Google Scholar
  14. Chang, P.-F. L.; Xu, Y.; Narasimhan, M. L., et al. Induction of pathogen resistance and pathogenesis-related genes in tobacco by a heat-stableTrichoderma mycelial extract and plant signal messengers. Physiol. Plant. 100:341–352; 1997.CrossRefGoogle Scholar
  15. Chanway, C. P.; Nelson, L. M. Tissue culture bioassay for plant growth promoting rhizobacteria. Soil Biol. Biochem. 23:331–333; 1991.CrossRefGoogle Scholar
  16. Chávez, M. C. C.; Ferrera-Cerrato, R. Effect of vesicular-arbuscular mycorrhizae on tissue culture-derived plantlets of strawberry. HortScience 25:903–905; 1990.Google Scholar
  17. Chen, C.; Bauske, E. M.; Musson, G., et al. Biological control of fusarium wilt on cotton by use of endophytic bacteria. Biol. Control 5:83–91; 1995.CrossRefGoogle Scholar
  18. Conn, K. L.; Nowak, J.; Lazarovits, G. A gnotobiotic bioassay for studying interactions between potato and plant growth-promoting rhizobacteria. Can. J. Microbiol. 43:801–808; 1997.Google Scholar
  19. Cournac, L.; Cirier, I.; Chagvardieff, P. Improvement of photoautotrophicSolanum tuberosum plantlet culture by light and CO2: differential development of photosynthetic characteristics and varietal constraints. Acta Hortic. 319:53–58; 1992.Google Scholar
  20. Cournac, L.; Dimon, B.; Carrier, P., et al. Growth and photosynthetic characteristics ofSolanum tuberosum plantlets cultivatedin vitro in different conditions of aeration, sucrose supply and CO2 enrichment. Plant Physiol. 97:112–117; 1991.PubMedGoogle Scholar
  21. Creus, C. M.; Sueldo, R. J.; Barassi, C. A. Water relations inAzospirillum-inoculated wheat seedlings under osmotic stress. Can. J. Bot. (in press): 1998.Google Scholar
  22. Datnoff, L. E.; Nemec, S.; Pernezny, K. Biological control of fusarium crown and root rot of tomato in Florida usingTrichoderma harzianum andGlomus intraradices. Biol. Control 5:427–431; 1995.CrossRefGoogle Scholar
  23. DeFreitas, J. R.; Germida, J. J. A root tissue culture system to study winter wheat-rhizobacteria interactions. Appl. Microbiol. Biotechnol. 33:589–595; 1990.CrossRefGoogle Scholar
  24. Desjardins, Y. Overview of factors influencing photosynthesis of micropropagated plantlets and their effect on acclimatization. In: Carré, F.; Chagvardieff, P., ed. Ecophysiology and photosyntheticin vitro cultures. Aix-en-Provence (France); CEA; 1995:145–160.Google Scholar
  25. Desjardins, Y.; Laforge, F.; Lussier, C., et al. Effect of CO2 enrichment and high photosynthetic photon flux on the development of autotrophy and growth of tissue cultured strawberry, raspherry and asparagus plants. Acta Hortic. 230:45–53; 1988.Google Scholar
  26. Dixon, R. A.; Harrison, M. J.; Lamb, C. F. Early events in the activation of plant defence responses. Annu. Rev. Phytopathol. 32:479–501; 1994.CrossRefGoogle Scholar
  27. Donnelly, D. J.; Vidaver, W. E.; Lee, K. Y. The anatomy of tissue cultured red raspherry prior to and after transfer to soil. Plant Cell Tissue Organ Cult. 4:43–50; 1985.CrossRefGoogle Scholar
  28. Dowling, D. N.; O'Gara, F. Metabolites ofPseudomonas involved in the biocontrol of plant diseases. TIBTECH 12:133–141; 1994.Google Scholar
  29. Dunbar, C. Utilization of seaweed extract and plant growth promoting rhizobacterium in greenhouse production of potato minitubers. M.Sc. thesis, Dalhousie University, Halifax, NS, Canada; 1997.Google Scholar
  30. Elmeskaoui, A.; Damont, J.-J. P.; Piché, Y., et al. A tripartite culture system for endomycorrhizal inoculation of micropropagated strawberry plantletsin vitro. Mycorrhiza 5:313–319; 1995.CrossRefGoogle Scholar
  31. Frommel, M. I.; Nowak, J.; Lazarovits, G. Growth enhancement and developmental modifications ofin vitro grown potato (Solanum tuberosum ssp.tuberosum) as affected by a nonfluorescentPseudomonas sp. Plant Physiol. 96:928–936; 1991a.PubMedGoogle Scholar
  32. Frommel, M. I.; Pazos, G. S.; Nowak, J. Plant-growth stimulation and biocontrol of Fusarium wilt by co-inoculation of tomato seeds withSerratia plymuthica andPseudomonas sp. Fitopathologia 26:66–73; 1991b.Google Scholar
  33. Frommel, M. I.; Nowak, J.; Lazarovits, G. Treatment of potato tubers with a growth promotingPseudomonas sp.; bacterium distribution in the rhizosphere and plant growth responses. Plant Soil 150:51–60; 1993.CrossRefGoogle Scholar
  34. Fujiwara, K.; Kozai, T. Control of environmental factors for plantlet production—with some mathematical simulation. In: Carre, F.; Chagvardieff, P., ed. Ecophysiology and photosyntheticin vitro cultures. Aix-en-Provence (France): CEA; 1995:109–120.Google Scholar
  35. Glick, B. R. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41:109–117; 1995.CrossRefGoogle Scholar
  36. Glick, B. R.; Bashan, Y. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol. Adv. 15:353–378; 1997.PubMedCrossRefGoogle Scholar
  37. Gould, A. B.; Kobayashi, D. Y.; Bergen, M. S. Identification of bacteria for biocontrol ofBotrytis cinerea on petunia using petal disc assay. Plant Disease 80:1029–1033; 1996.CrossRefGoogle Scholar
  38. Hampson, M. C.; Coombes, J. W.; Debnath, S. C. Dual culture ofSolanum tuberosum andSynchytrium endobioticum (pathotype 2). Mycologia 89:772–776; 1997.CrossRefGoogle Scholar
  39. Harmon, A. C. The calcium connection. TIPS 2:121–122; 1997.Google Scholar
  40. Herman, E. B. Contaminants promote potato micropropagation. Agricell Report 9:38; 1987.Google Scholar
  41. Herman, E. B. Beneficial effects of bacteria and fungi on plant tissue cultures. Agricell Rep. 27:26–27; 1996a.Google Scholar
  42. Herman, E. B. Microbial contamination of plant tissue cultures. Recent Advances in Plant Tissue Culture IV. Shrub Oak (NY): Agritech Cons., Inc., 1996b.Google Scholar
  43. Hooker, J. E.; Gianinazzi, S.; Vestberg, M., et al. The application of arbuscular mycorrhizal fungi to micropropagation systems: an opportunity to reduce chemical inputs. Agric. Sci. Finland 3:227–232; 1994.Google Scholar
  44. Hugenholtz, P.; Pace, N. R. Identifying microbial diversity in the natural environment; a molecular phylogenetic approach. TIBTECH 14:190–197; 1996.Google Scholar
  45. Hunt, M. D.; Ryals, J. A. Systemic acquired resistance signal transduction. Critical Rev. Plant Sci. 15:583–606; 1996.CrossRefGoogle Scholar
  46. Hussain, S.; Lane, S. D.; Price, D. N. A preliminary evaluation of the use of microbial culture filtrates for the control of contaminants in plant tissue culture systems. Plant Cell Tissue Organ Cult. 36:45–51; 1994.CrossRefGoogle Scholar
  47. Jackson, A. J.; Walters, D. R.; Marshall, G. Antagonistic interactions between the foliar pathogenBotrytis fabae and isolates ofPenicillium brevicompactum andCladosporium cladosporioides on faba beans. Biol. Control 8:97–106; 1997.CrossRefGoogle Scholar
  48. Jacobs, M. J.; Bugbee, W. M.; Gabrielson, D. A. Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can. J. Bot. 63:1262–1265; 1985.Google Scholar
  49. Jeong, B. R.; Fujiwara, K.; Kozai, T. Environmental control and photoatotrophic micropropagation. Hort. Rev. 17:125–172; 1995.Google Scholar
  50. Kloepper, J. W.; Lifshitz, R.; Schroth, M. N.Pseudomonas inoculants to benefit enhancing production. ISI Atlas of Sciences: Animal Plant Sci. 1:60–64; 1988.Google Scholar
  51. Kloepper, J. W.; Lifshitz, R.; Zablotowicz, R. M. Free-living bacterial inocula for enhancing crop productivity. TIBTECH 7:39–44; 1989.Google Scholar
  52. Kloepper, J. W.; Tuzun, S.; Zehnder, G. W., et al. Multiple disease protection by rhizobacteria that induce systemic resistance—historical perspective. Phytopathology 87:136–137; 1997.CrossRefPubMedGoogle Scholar
  53. Kozai, T. Micropropagation under photoautotrophic conditions. In: Debergh, P. C.; Zimmerman, R. M., ed. Micropropagation, technology and application. Dordrecht: Kluwer Acad. Publ.; 1991:447–469.Google Scholar
  54. Kozai, T.; Koyama, Y.; Watanabe, I. Multiplication of potato plantletsin vitro with sugar-free medium under high photosynthetic photon flux. Acta Hortic. 230:121–127; 1988.Google Scholar
  55. Lazarovits, G.; Nowak, J. Rhizobacteria for improvement of plant growth and establishment. HortScience 32:188–192; 1997.Google Scholar
  56. Lee, N.; Wetzstein, H. Y. Quantum flux density effects on the anatomy and surface morphology ofin vitro andin vivo developed sweetgum leaves. J. Am. Soc. Hort. Sci. 113:167–171; 1988.Google Scholar
  57. Leifert, C.; Morris, C. E.; Waites, W. M. Ecology of microbial saprophytes and pathogens in tissue culture and field-grown plants: reasons for contamination problemsin vitro. Crit. Rev. Plant Sci. 13:139–183; 1994.CrossRefGoogle Scholar
  58. Leifert, C.; Murphy, K. P.; Lumsden, P. J. Mineral and carbohydrate nutrition of plant cell and tissue cultures. Crit. Rev. Plant Sci. 14:83–109; 1995.CrossRefGoogle Scholar
  59. Levin, R.; Stav, R.; Alper, Y., et al. A technique for repeated non-axenic subculture of plant tissues in a bioreactor on liquid medium containing sucrose. Plant Tissue Cult. Biotech. 3:41–45; 1997.Google Scholar
  60. Lifshitz, R.; Kloepper, J. W.; Kozlowski, M., et al. Growth promotion of canola (rapeseed) seedlings by a strain ofPseudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 33:390–395; 1987.CrossRefGoogle Scholar
  61. Liu, Z.; Pillay, V.; Nowak, J.In vitro culture of watermelon and cantaloupe with and without beneficial bacterium. Acta Hortic. 402:58–60; 1995.Google Scholar
  62. Lynch, D. R.; Coleman, M. C.; Lyon, G. D. Effect ofAlternaria solani culture filtrate on adventitious shoot regeneration in potalo. Plant Cell Rep. 9:607–610; 1991.CrossRefGoogle Scholar
  63. Lynch, J. M., ed. The rhizosphere. Chichester (UK): Wiley; 1990.Google Scholar
  64. Majada, J. P.; Fal, M. S.; Sanchez-Tomés, R. Influence of thein vitro environment on the stomatal physiology and morphology of micropropagatedDianthus caryophyllus cv. Nelken. In: Carre, F.; Chagvardieff, P., ed. Ecophysiology and photosyntheticin vitro cultures. Aix-en-Provence (France): CEA; 1995:141–144.Google Scholar
  65. Matthijs, D. G.; Pascat, B.; Demeester, J., et al. Factors controlling the evolution of the gaseous atmosphere duringin vitro culture. In: Carre, F.: Chagvardieff, P., ed. Ecophysiology and photosyntheticin vitro cultures. Aix-en-Provence (France): CEA; 1995:129–140.Google Scholar
  66. McAfee, B. J.; White, E.E.; Pelcher, L. E., et al. Root induction in pine (Pinus) and larch (Larix) spp. usingAgrobacterium rhizogenes. Plant Cell Tissue Organ Cult. 34:53–62; 1993.CrossRefGoogle Scholar
  67. McClelland, M. T.; Smith, M. A. L. Vessel type, closure, and explant orientation influencein vitro performance of five woody species. Hort-Science 25:797–800; 1990.Google Scholar
  68. McInroy, J. A.; Kloepper, J. W. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342; 1995.CrossRefGoogle Scholar
  69. Monette, P. L. Micropropagation of kiwi fruit using non-axenic shoot tips. Plant Cell Tissue Organ Cult. 6:73–82; 1986.CrossRefGoogle Scholar
  70. Murphy, J.; Mark, L.; Periappuram, C., et al. Microbial characterisation and preparation of inoculum forin vitro mycorrhization of strawberry in autotrophic culture. In: Cassells, A. L., ed. Pathogen and microbial contamination management in micropropagation. Dordrecht (NL): Kluwer Acad. Publ.; 1997:345–350.Google Scholar
  71. Noel, T. C.; Sheng, C.; Yost, C. K., et al.Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can. J. Microbiol. 42:279–283; 1996.PubMedGoogle Scholar
  72. Nowak, J.; Asiedu, S. K.; Bensalim, S., et al. From laboratory to applications: challenges and progress within vitro dual cultures of potato and beneficial bacteria. In: Cassells, A., ed. Pathogen and microbial contamination management in micropropagation. Dordrecht (NL): Kluwer Acad. Publ.; 1997:321–329.Google Scholar
  73. Nowak, J.; Asiedu, S. K.; Lazarovits, G., et al. Enhancement ofin vitro growth and transplant stress tolerance of potato and vegetable plants cocultured with a plant growth promoting rhizobacterium. In: Carre, F.; Chagvardieff, P., ed. Ecophysiology and photosynthetic in vitro cultures. Aix-en-Provence (France): CEA; 1995:173–180.Google Scholar
  74. O'Brien, T. P.; McCully, M. E. The study of plant structure. Principles and selected methods. Melbourne (Australia): Termarcarphi Pty Ltd.; 1981.Google Scholar
  75. Pfleger, F. L.; Linderman, R. G., ed., Mycorrhizae and plant health. St. Paul (MN): Am. Phytopathol. Soc.; 1994.Google Scholar
  76. Phan, C. T.; Hegedus, P. Possible metabolic basis for the developmental anomaly observed inin vitro culture called ‘vitreous plants’. Plant Cell Tissue Organ Cult. 6:83–94; 1986.CrossRefGoogle Scholar
  77. Pierik, R. L. M.In vitro culture of higher plants. Dordrecht (NL): Martinus Nijhoff Publ.; 1987.Google Scholar
  78. Pierik, R. L. M.In vitro culture of higher plants as a tool in propagation of horticultural crops. Acta Hort. 226:25–40; 1988.Google Scholar
  79. Pillay, V. K.; Nowak, J. Inoculum density, temperature and genotype effects on epiphytic and endophytic colonization andin vitro growth promotion of tomato (Lycopersicon esculentum L.) by a pseudomonad bacterium. Can. J. Microbiol. 43:354–361; 1997.CrossRefGoogle Scholar
  80. Platt, H. W.; Bollen, J. J. Use of tissue culture potato plantlets for investigations of diseases of subterranean plant parts. Plant Dis. 77:1112–1113; 1993.CrossRefGoogle Scholar
  81. Ponton, F.; Piché, Y.; Parent, S., et al. The use of vesicular-arbuscular mycorrhizae in Boston fern production: I. Effects of peat-based mixes. HortScience 25:183–189; 1990.Google Scholar
  82. Powell, C. L.; Bagyaraj, D. J., ed., VA mycorrhiza. Boca Raton (FL): CRC Press, Inc.; 1984.Google Scholar
  83. Preece, J. E.; Sutter, E. G. Acclimation of micropropagated plants to the greenhouse and field. In: Debergh, P. C.; Zimmerman, R. H., ed. Micropropagation, technology and application. Dordrecht (NL): Kluwer Acad. Publ.; 1991:71–93.Google Scholar
  84. Preininger, É.; Zatyko, J.; Szucs, P., et al.In vitro establishment of nitrogen-fixing strawberry (Fragaria x annassa) via artificial symbiosis withAzomonas insignis. In Vitro Cell. Dev. Biol. 33P:190–194; 1997.Google Scholar
  85. Rchid, H.; Baccou, J. C. Effect of light and sucrose on the ultrastructure of plastids and on the growth and steroidic sapogenin production ofTrigonella foenum-graecum L. cell suspension cultures. In: Carre, F.; Chagvardieff, P., ed. Ecophysiology and photosyntheticin vitro cultures. Aix-en-Provence (France): CEA; 1995:87–92.Google Scholar
  86. Reed, B. M.; Tanprasert, P. Detection and control of bacterial contaminants of plant tissue cultures. A review of recent literature. Plant Tissue Culture Biotech. 1:137–142; 1995.Google Scholar
  87. Richards, J. Induced resistance responses in potato inoculatedin vitro with a plant growth promoting pseudomonad bacterium. M.Sc. thesis, Dalhousie University, Halifax, NS, Canada; 1997.Google Scholar
  88. Rovira, A. D. Rhizosphere research—85 years progress and frustration. In: Keister, D. L.; Cregan, P. B., ed. Dordrecht (NL): Kluwer Acad. Publ.; The rhizosphere and plant growth. 1991:3–13.Google Scholar
  89. Schippers, B.; Bakker, A. W.; Bakker, P. A. H. M. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Ann. Rev. Phytopathol. 25:339–358; 1987.CrossRefGoogle Scholar
  90. Sharma, V. K,; Nowak, J. Verticillium wilt suppression in tomato with pseudomonad bacterium. Can. J. Microbiol. (in press); 1998.Google Scholar
  91. Sheen, J. Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902; 1996.PubMedCrossRefGoogle Scholar
  92. Shetty, K.; Curtis, O. F.; Levin, R. E., et al. Prevention of vitrification associated within vitro shoot culture of oregano (Origanum vulgare) byPseudomonas spp. J. Plant Physiol. 147:447–451; 1995.Google Scholar
  93. Stewart, A. H. Suppression of verticillium wilt in potatoes with a plant growth promoting rhizobacterium. M.Sc. thesis, Dalhousie University, Halifax, NS, Canada; 1997.Google Scholar
  94. Sturz, A. V. The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 175:257–263; 1995.CrossRefGoogle Scholar
  95. Sturz, A. V.; Christie, B. R. Endophytic bacterial systems governing red clover growth and development. Ann. Appl. Biol. 126:285–290; 1995.CrossRefGoogle Scholar
  96. Sturz, A. V.; Christie, B. R.; Matheson, B. G., et al. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol. Fert. Soils 25:13–19; 1997.CrossRefGoogle Scholar
  97. Van Huylenbroeck J. M.; Debergh, P. C. Physiological aspects in acclimatization of micropropagated plantlets. Plant Tissue Cult. Biotech. 2:136–141; 1996.Google Scholar
  98. Varga Sz. S.; Korányi, P.; Preininger, É., et al. Artificial associations betweenDaucus and nitrogen-fixingAzotobacter cells in vitro. Physiol. Plant. 90:786–790; 1994.CrossRefGoogle Scholar
  99. Visser-Tenyenhuis, C.; Odumeru, J.; Saxena, P. K., et al. Modulation of somatic embryogenesis in hypocotyl derived cultures of geranium (Pelargonium x horturum Bailey) cv. Ringo Rose by a bacterium. In Vitro Cell. Dev. Biol. 30P:140–143; 1994.Google Scholar
  100. Wake, H.; Akasaka, A.; Umetsu, H., et al. Promotion of plantlet formation from somatic embryos of carrot treated with a high molecular weight extract from marine cyanobacterium. Plant Cell Rep. 11:62–65; 1992.CrossRefGoogle Scholar
  101. Wake, H.; Umetsu, H.; Ozeki, Y., et al. Extracts of marine cyanobacteria stimulated somatic embryogenesis ofDaucus carota L. Plant Cell Rep. 9:655–658; 1991.CrossRefGoogle Scholar
  102. Walley, F. L.; Germida, J. J. Response of spring wheat (Triticum aestivum) to interactions betweenPseudomonas species andGlomus clarum NT4. Biol. Fertil. Soils 24:365–367; 1997.CrossRefGoogle Scholar
  103. Wang, H.; Parent, S.; Gosselin, A., et al. Study of vesicular-arbuscular mycorrhizal peat-based substrates on symbiosis establishment, acclimatization and growth of three micropropagated species. J. Am. Soc. Hort. Sci. 118:896–901; 1993.Google Scholar
  104. Wilhelm, E.; Arthofer, W.; Schafleitner, R., et al.Bacillus subtilis an endophyte of chestnut (Castanea sativa) as antagonist against chestnut blight (Cryphonectaria parasitica). In: Cassells A., ed. Pathogen and microbial contamination management in micropropagation. Dordrecht (NL): Kluwer Acad. Publ.; 1997;331–337.Google Scholar
  105. Yang, Y.-S.; Wada, K.; Goto, M., et al.In vitro formation of nodular calli in soybean (Glycine max L.) induced by co-cultivatedPseudomonas maltophilia. Japan. J. Breed. 41:595–604; 1991.Google Scholar
  106. Yu, K.; Christie, B. R.; Paulus, K. P. Effects ofVerticillium albo-atrum culture filtrate on somatic embryogenesis in alfalfa. Plant Cell Rep. 8:509–511; 1990.CrossRefGoogle Scholar
  107. Zehnder, G.; Kloepper, J.; Tuzun, S., et al. Insect feeding on cucumber mediated by rhizobacteria-induced plant resistance. Entomol. Exp. Appl. 83:81–85; 1997.CrossRefGoogle Scholar
  108. Ziv, M. Vitrification: morphological and physiological disorders ofin vitro plants. In: Debergh, P. C.; Zimmerman, R. H., ed. Micropropagation, technology and applications. Dordrecht (NL): Kluwer Acad. Publ.; 1991:45–69.Google Scholar
  109. Ziv, M.; Schartz, A.; Fleminger, D. Malfunctioning stomata in vitreous leaves of carnation (Dianthus caryophyllus) plants propagatedin vitro; implications for hardening. Plant Sci. 52:127–134; 1987.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 1998

Authors and Affiliations

  • Jerzy Nowak
    • 1
  1. 1.Department of Plant ScienceNova Scotia Agricultural CollegeTruroCanada

Personalised recommendations