Cryopreservation and long-term storage of pear germplasm

  • Barbara M. Reed
  • Jeanine Denoma
  • Jie Luo
  • Yongjian Chang
  • Leigh Towill


Germplasm collections of vegetatively propagated crops are usually maintained as plants in fields or potted in greenhouses or screened enclosures. Safety duplication of these collections, as duplicate plants or separate collections, is costly and requires large amounts of space. Cryopreservation techniques which were recently developed for long-term storage of pear germalasm may offer an efficient alternative to conventional germplasm collection maintenance. Pear (Pyrus L.) germplasm may now be stored as seeds (species), dormant buds or pollen from field-grown trees, or shoot tips fromin vitro-grown plants (cultivars). Pear germplasm may now be cryopreserved and stored for long periods (> 100 yr) utilizing slow-freezing or vitrification ofin vitro-grown shoot-tips. Dormant bud freezing, pollen, and seed cryopreservation of other lines are being developed to complete the base collection forPyrus. This cryopreserved collection provides base (long-term) storage for the field-grown pear germplasm collection at the National Clonal Germplasm Repository, Corvallis, Oregon.

Key words

cryopreservation genebank liquid nitrogen storage Pyrus slow freezing vitrification 


  1. Akihama, T.; Omura, M. Preservation of fruit tree pollen. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, Vol. 1. Trees. Berlin, Heidelberg: Springer-Verlag; 1986:101–112.Google Scholar
  2. Akihama, T.; Omura, M.; Kozaki, I. Further investigation of freeze-drying for deciduous fruit tree pollen. In: Akihama, T.; Nakajima, K., ed. Longterm preservation of favourable germplasm in arboreal crops. Fruil Tree Research Station, M. A. F., Ibarakiken, Japan. 1978.Google Scholar
  3. Bajaj, Y. P. S. Cryopreservation of plant cell, tissue and organ culture for the conservation of germplasm and biodiversity. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, cryopreservation of plant germplasm I. Vol. 32. New York: Springer-Verlag; 1995:3–18.Google Scholar
  4. Chang, Y.; Reed, B. M. The effects ofin vitro growth condition on the cryopreservation ofPyrus meristems. In Vitro Cell. Dev. Biol. 33A: 50; 1997.Google Scholar
  5. Chen, S.; Chang, Y.; Zhao, Y., et al. Supercryopreservation of fruit tree pollens. Acta Agric. Boreali-Sinica 8:60–64; 1993.Google Scholar
  6. Cheng, T. Y. Micropropagation of clonal fruit tree rootstocks. Compact Fruit Tree 12:127–137; 1979.Google Scholar
  7. Craddock, W. J. H. Cryopreservation of pollen. M. S. Thesis. Oregon State University. Corvallis, Oregon. 1987.Google Scholar
  8. Dereuddre, J.; Scottez, C.; Arnaud, Y., et al.: Effects of cold hardening on cryopreservation of axillary pear (Pyrus communis L. cv. Beurre Hardy) shoot tips ofin vitro plantlets. C. R. Acad. Sci. Paris 310:265–272; 1990a.Google Scholar
  9. Dereuddre, J.; Scottez, C.; Arnaud, Y., et al. Resistance of alginate-coated axillary shoot tips of pear tree (Pyrus communis L. cv. Beurre Hardy)in vitro plantlets to dehydration and subsequent freezing in liquid nitrogen. C. R. Acad. Sci. Paris 310:317–323; 1990b.Google Scholar
  10. Engelmann, F.In vitro conservation of horticultural species. Acta Hort. 298:327–332; 1991.Google Scholar
  11. Harding, K.; Benson, E. E.; Smith, H. The effects of pre-freezein vitro culture period on the recovery of cryopreserved shoot tips ofSolanum tuberosum. Cryo Lett. 12:17–22; 1991.Google Scholar
  12. Luo, J.; DeNoma, J.; Reed, B. M. Cryopreservation screening ofPyrus germplasm. Cryobiology 32:558; 1995.Google Scholar
  13. Mi, W.; Sanada, T. Cryopreservation of pear winter buds and shoot tips. China Fruits, pp. 20–22 and 38; 1992.Google Scholar
  14. Mi, W.; Sanada, T. Cryopreservation of pear shoot tipsin vitro, Adv. Hort. 86–88; 1994.Google Scholar
  15. Moriguchi, T. Cryopreservation and minimum growth storage of pear (Pyrus species). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry. Vol. 32, Berlin, Heidelberg: Springer-Verlag; 1995;114–128.Google Scholar
  16. Moriguchi, T.; Akihama, T.; Kozaki, I. Freeze-preservation of dormant pear shoot apices. Japan. J. Breed. 35:196–199; 1985.Google Scholar
  17. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.CrossRefGoogle Scholar
  18. Niino, T.; Sakai, A. Cryopreservation of alginate-coatedin vitro-grown shoot tips of apple, pear and mulberry. Plant Sci. 87:199–126; 1992.CrossRefGoogle Scholar
  19. Niino, T.; Sakai, A.; Yakuwa, H., et al. Cryopreservation ofin vitro-grown shoot tips of apple and pear by vitrification. Plant Cell Tissue Organ Cult. 28:261–266; 1992.CrossRefGoogle Scholar
  20. Oka, S.; Yakuwa, H.; Sato, K., et al. Survival and shoot formationin vitro of pear winter buds cryopreserved in liquid nitrogen. Hort Science 26:65–66; 1991.Google Scholar
  21. Reed, B. M. Survival ofin vitro-grown apical meristems ofPyrus following cryopreservation. HortScience 25:111–113; 1990.Google Scholar
  22. Reed, B. M.; Yu, X. Cryopreservation ofin vitro-grown gooseberry and currant meristems. Cryo Lett. 16:131–136; 1995.Google Scholar
  23. Reed, B. M.; DeNoma, J.; Luo, J., et al. Cryopreserved storage of a world pear collection. In Vitro Cell. Dev. Biol. 33A:51; 1997.Google Scholar
  24. Sakai, A.; Nishiyama, Y. Cryopreservation of winter vegetative buds of hardy fruit trees in liquid nitrogen. HortScience 13:225–227; 1978.Google Scholar
  25. Stottez, C.; Chevreau, E.; Godard, N., et al. Cryopreservation of cold acclimated shoot tips of pearin vitro cultures after encapsulation-dehydration. Cryobiology 29:691–700; 1992.CrossRefGoogle Scholar
  26. Stanwood, P. C. Cryopreservation of seed germplasm for genetic conservation. In: Kartha, K. K., ed. Cryopreservation of plant cells and tissues. Boca Raton, FL: CRC Press; 1985:199–226.Google Scholar
  27. Suzuki, M.; Niino, T.; Akihama, T., et al. Shoot formation and plant regeneration of vegetative pear buds cryopreserved at—150 degrees C. J. Japan. Soc. Hort. Sci. 66:29–34; 1997.CrossRefGoogle Scholar
  28. Tanksley, S. D.; McCouch S. R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 177:1063–1066; 1997.CrossRefGoogle Scholar
  29. Towill, L. E. Low temperature and freeze-/vacuum-drying preservation of pollen. In: Kartha, K. K., ed. Cryopreservation of plant cells and organs. Boca Raton, FL. CRC Press; 1985:171–198.Google Scholar
  30. Visser, T. Germination and storage of pollen. Meded. Landbouwhogesch. Wageningen 55:1–68; 1955.Google Scholar
  31. Withers, L. A.In-vitro conservation. Biol. J. Linn. Soc. 43:31–42; 1991.CrossRefGoogle Scholar
  32. Withers, L. A.; Benson, E. E.; Martin, M. Cooling rate/culture medium interactions in the survival and structural stability of cryopreserved shoot-tips ofBrassica napus. Cryo Lett. 9:114–119; 1988.Google Scholar
  33. Yamada, T.; Sakai, A.; Matsumura, T., et al. Cryopreservation of apical meristems of white clover (Trifolium repens L.) by vitrification. Plant Sci. 78:81–87; 1991.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 1998

Authors and Affiliations

  • Barbara M. Reed
    • 1
  • Jeanine Denoma
    • 2
  • Jie Luo
    • 2
  • Yongjian Chang
    • 2
  • Leigh Towill
    • 3
  1. 1.USDA-ARS National Clonal Germplasm RepositoryCorvallis
  2. 2.Department of HorticultureOregon State UniversityOregonCorvallis
  3. 3.USDA-ARS National Seed Storage LaboratoryFort Collins

Personalised recommendations