Plant hormones and plant growth regulators in plant tissue culture

  • Thomas Gaspar
  • Claire Kevers
  • Claude Penel
  • Hubert Greppin
  • David M. Reid
  • Trevor A. Thorpe
Physiology Review


This is a short review of the classical and new, natural and synthetic plant hormones and growth regulators (phytohormones) and highlights some of their uses in plant tissue culture. Plant hormones rarely act alone, and for most processes— at least those that are observed at the organ level—many of these regulators have interacted in order to produce the final effect. The following substances are discussed: (a) Classical plant hormones (auxins, cytokinins, gibberellins, abscisic acid, ethylene and growth regulatory substances with similar biological effects. New, naturally occurring substances in these categories are still being discovered. At the same time, novel structurally related compounds are constantly being synthesized. There are also many new but chemically unrelated compounds with similar hormone-like activity being produced. A better knowledge of the uptake, transport, metabolism, and mode of action of phytohormones and the appearance of chemicals that inhibit synthesis, transport, and action of the native plant hormones has increased our knowledge of the role of these hormones in growth and development. (b) More recently discovered natural growth substances that have phytohormonal-like regulatory roles (polyamines, oligosaccharins, salicylates, jasmonates, sterols, brassinosteroids, dehydrodiconiferyl alcohol glucosides, turgorins, systemin, unrelated natural stimulators and inhibitors), as well as myoinositol. Many of these growth active substances have not yet been examined in relation to growth and organized developmentin vitro.

Key words

abscisic acid auxins brassinosteroids cytokinis ethylene gibberellins jasmonates natural/synthetic growth active substances oligosaccharins phytohormones polyamines salicylates sterols systemin turgorins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, F. B.; Morgan, O. W., Saltveit, M. E. Ethylene in plant biology, 2nd Ed. San Diego: Academic Press; 1992.Google Scholar
  2. Addicott, F. T. Abscission. Berkeley: University of California Press; 1982.Google Scholar
  3. Aldington, S.; Fry, S. Oligosaccharins. Adv. Bot. Res. 19:1–101; 1993.Google Scholar
  4. Aloni, R. The induction of vascular tissues by auxin and cytokinin. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:531–546.Google Scholar
  5. Apelbaum, A.; Burg, S. P. Altered cell microfibrillar orientation in ethylenetreatedPisum sativum stems. Plant. Physiol. 48:648–652; 1971.PubMedGoogle Scholar
  6. Aribaud, M.; Carré, M.; Martin-Tanguy, J. Polyamine metabolism and in vitro cell multiplication and differentiation in leaf explants ofChrysanthemum morifolium Ramat. Plant Growth Regul. 15:143–155; 1994.CrossRefGoogle Scholar
  7. Arteca, R. N. Brassinosteroids. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:205–213.Google Scholar
  8. Bagni, N.; Altamura, M. N.; Biondi, S., et al. Polyamines and morphogenesis in normal and transgenic plant cultures. In: Roubelakis-Angelakis, K. A.; Tran Thanh Van K., ed. Morphogenesis in plants: molecular approaches. New York: Plenum Press; 1993:89–111.Google Scholar
  9. Bandurski, R. S.; Cohen, J. D.; Slovin, J., et al. Auxin biosynthesis and metabolism. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:39–65.Google Scholar
  10. Beale, M. H.; Sponsel, V. M. Future directions in plant hormone research. J. Plant Growth Regul. 12:227–235; 1993.CrossRefGoogle Scholar
  11. Bearder, J. R. Plant hormones and other growth substances and their background, structures and occurrence. In: MacMillan, J., ed. Ency, plant physiol. N.S., Vol. 9. Berlin: Springer-Verlag; 9–112; 1980.Google Scholar
  12. Bewley, J. D.; Black, M. Physiology and biochemistry of seeds, vol. 2. Berlin: Springer-Verlag; 1982.Google Scholar
  13. Binns, A. N. Cytokinin accumulation and action: biochemical, genetic and molecular approaches. Ann. Rev. Physiol. Plant Mol. Biol. 45:173–196; 1994.CrossRefGoogle Scholar
  14. Brock, T. G.; Kaufman, P. B. Growth regulators: an account of hormones and growth regulation. In: Bidwell, R. G. S., ed. Plant physiology, a treatise, Vol. X, Growth and development. San Diego: Academic Press; 1991:277–340.Google Scholar
  15. Chandler, S. F.; Thorpe, T. A. Hormonal regulation of organogenesis in vitro. In: Hormonal regulation of plant growth and development, Vol. 3. India: Agro Botanical Publ. 1986:1–27.Google Scholar
  16. Chen, Z.; Silva, H.; Klessig, D. F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886; 1993.PubMedCrossRefGoogle Scholar
  17. Cook, C. E.; Whichard, L. P.; Wall, M. E., et al. Germination stimulants. II. The structure of strigol—a potent seed germination stimulant for Witchweed (Striga lutea Lour.). J. Am. Chem. Soc. 94:6198–6199; 1972.CrossRefGoogle Scholar
  18. Coté, G. G.; Crain, R. C. Biochemistry of phosphoinositides. Ann. Rev. Plant Physiol. Plant Mol. Biol. 44:333–356; 1993.CrossRefGoogle Scholar
  19. Darvill, A.; Augur, C.; Bergmann, C., et al. Oligosaccharins—oligosaccharides that regulate growth development and defence responses in plants. Glycobiology 2:181–198; 1992.PubMedCrossRefGoogle Scholar
  20. Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995;13–38.Google Scholar
  21. Davies, W. J.; Jones, H. G., ed. Abscisic acid: physiology and biochemistry. Oxford: Bios Sci. Publ.; 1991.Google Scholar
  22. Debergh, P. C.; Zimmerman, R. H., ed. Micropropagation. Dordrecht: Kluwer Academic Publishers; 1991.Google Scholar
  23. Emery, R. J. N.; Reid, D. M. Methyl jasmonate effect on ethylene synthesis and organ-specific senescence inHelianthus annuus seedlings. Plant Growth Regul. 18:213–222; 1996.CrossRefGoogle Scholar
  24. Evans, P. T.; Malmberg, R. L. Do polyamines have roles in plant development? Ann. Rev. Plant Physiol. Plant. Mol. Biol. 40:235–269; 1989.Google Scholar
  25. Evans, D. A.; Sharp, W. R.; Flick, C. E. Growth and behavior of cell cultures: embryogenesis and organogenesis. In: Thorpe, T. A., ed. Plant cell culture: methods and applications in agriculture. New York; Academic Press; 1981:45–113.Google Scholar
  26. Fabijan, D. M.; Plumb-Dhindsa, P.; Reid, D. M. Effects of two growth retardants on tissue permeability inPisum sativum andBeta vulgaris. Planta 152:481–486; 1981.CrossRefGoogle Scholar
  27. Fabijan, D.; Taylor, J. S.; Reid, D. M. Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. II. Actions of gibberellins, cytokinins and ethylene. Physiol. Plant. 53:589–597; 1981.CrossRefGoogle Scholar
  28. Fry, S. C.; Street, H. E.: Gibberellin-sensitive cultures. Plant Physiol. 65:472–477; 1980.PubMedCrossRefGoogle Scholar
  29. Galston, A. W.; Kaur-Sawhney, R. Polyamines as endogeneous growth regulators. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:158–178.Google Scholar
  30. Gamble, P. E.; Mullet, J. Inhibition of carotenoid accumulation and abscisic acid biosynthesis in fluridone-treated dark-grown barley. Eur. J. Biochem. 160:117–121; 1986.PubMedCrossRefGoogle Scholar
  31. Gamborg, O. L.; LaRue, T. A. G. Ethylene production by plant cell cultures. The effects of auxins, abscisic acid, and kinetin on ethylene production in suspension cultures of rose andRuta cells. Plant Physiol. 48:399–401; 1971.PubMedGoogle Scholar
  32. Gamborg, O. L.; Murashige, T.; Thorpe, T. A., et al. Plant tissue culture media. In Vitro 12:473–478; 1976.PubMedCrossRefGoogle Scholar
  33. Gaspar, T. Selenieted forms of indolylacetic acid: new powerful synthetic auxins. Across Organics Acta 1:65–66; 1995.Google Scholar
  34. Gaspar, T.; Kevers, C.; Bouillenne, H., et al. Ethylene production in relation to rose micropropagation. In: Clysters, H.; De Proft, M.; Marcelle, R., et al., ed. Biochemical and physiological aspects of ethylene production in lower and higher plants. Dordrecht: Kluwer Academic Publishers; 1989:303–312.Google Scholar
  35. Gaspar, T.; Kevers, C.; Hausman, J., et al. Peroxidase activity and endogenous free auxin during adventitious root formation. In: Lumsden, P. J.; Nicholas, J. R.; Davies, W. J., ed. Physiology, growth and development of plants in culture. Dordrecht: Kluwer Academic Publishers; 1994:289–298.Google Scholar
  36. George, E. Plant propagation by tissue culture. Part 1. The technology. Edington: Exegetics Ltd.; 1993.Google Scholar
  37. Gray, D. J.; Conger, B. V. Influence of dicamba and casein hydrolysate on somatic embryo number and culture quality in cell suspensions ofDactylis glomerata (Gramineae). Plant Cell Tissue Organ Cult. 4:123–133; 1985.CrossRefGoogle Scholar
  38. Gross, D. Plant growth regulatory substances both of microbial and plant origin. Chem. Plant. Prot. 7:1–49; 1991.Google Scholar
  39. Gross, D.; Parthier, B. Novel natural substances acting in plant growth regulation. J. Plant Growth Regul. 13:93–114; 1994.CrossRefGoogle Scholar
  40. Hagen, S. R.; Muneta, P.; Augustin, J., et al. Stability and utilization of picloram, vitamins and sucrose in a tissue culture medium. Plant Cell Tissue Organ Cult. 25:45–48; 1991.CrossRefGoogle Scholar
  41. Hausman, J.; Kevers, C.; Gaspar, T. Involvement of putrescine in the inductive rooting phase of poplar shootsin vitro. Physiol. Plant. 92:201–206; 1994.CrossRefGoogle Scholar
  42. Henson, I. E. Inhibition of abscisic acid accumulation in shoots of pearl millet (Pennisetum americanum L.) following induction of chlorosis by norflurazon. Z. Pflanzenphysiol. 114:35–43; 1984.Google Scholar
  43. Hirai, N.; Yamamuro, M.; Koshimiza, K., et al. Accumulation of phenylpropanoids in the cotyledons of morning glory (Pharbitis nil) seedlings during the induction of flowering by low temperature treatment, and the effect of precedent exposure to high-intensity light. Plant Cell Physiol. 35:691–695; 1994.Google Scholar
  44. Huxter, T. J.; Reid, D. M.; Thorpe, T. A. Shoot intiation in light- and dark-grown tobacco callus: the role of ethylene. Physiol. Plant. 53:319–326; 1981.CrossRefGoogle Scholar
  45. Iwamura, H. Cytokinin antagonists: synthesis and biological activity. In: Mok, D. W. S.; Mok, M. C., ed. Cytokinins: chemistry, activity, and function. Boca Raton: CRC Press; 1994:43–55.Google Scholar
  46. Jarvis, B. C.; Ali, A. H. N.; Shaheed, A. I. Auxin and boron in relation to the rooting response and aging of mung bean cuttings. New Phytol. 95:509–518; 1983.CrossRefGoogle Scholar
  47. Jensen, R. A. Tyrosine and phenylalanine biosynthesis: relationship between alternate pathways, regulation and subcellular location. In: Conn, E. E., ed. Recent advances in plant phytochemistry, Vol. 20. New York and London: Plenum Press; 1986:57–81.Google Scholar
  48. John, M. C.; Amasino, R. M. Expression of an Agrobacterium Ti-plasmid gene involved in cytokinin biosynthesis in regulated by virulence loci and induced by plant phenolic compounds. J. Bacteriol. 170:790–795; 1988.PubMedGoogle Scholar
  49. Kallas, P.; Meier-Augenstein, W.; Schildknecht, H. The structure-activity relationship of the turgorin PLMF 1 in the sensitive plantMinosa pudica L. J. Plant Physiol. 136:225–230; 1990.Google Scholar
  50. Kende, H. Ethylene biosynthesis. Ann. Rev. Plant. Physiol. Plant Mol. Biol. 43:439–463; 1993.Google Scholar
  51. Kevers, C.; Boyer, N.; Courduroux, Y. C., et al. The influence of ethylene on proliferation and growth of rose shoot cultures. Plant Cell Tissue Organ Cult. 28:175–181; 1992.CrossRefGoogle Scholar
  52. Krikorian, A. D. Hormones in tissue culture and micropropagation. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:774–796.Google Scholar
  53. Kuhnle, J. A.; Fuller, G.; Corse, J., et al. Antisenescent activity of natural cytokinins. Plant Physiol. 41:14–21; 1977.CrossRefGoogle Scholar
  54. Kumar, P. P.; Reid, D. M.; Thorpe, T. A. The role of ethylene and carbon dioxide in differentiation of shoot buds in excised cotyledons ofPinus radiata in vitro. Physiol. Plant. 69:244–252; 1987.CrossRefGoogle Scholar
  55. Label, P.; Lelu, M.-A. Influence of exogenous abscisic acid on germination and plantlet conversion frequencies of hybrid larch somatic embryos (Larix × leptoeuropaea). Plant Growth Regul. 15:175–182; 1994.CrossRefGoogle Scholar
  56. Lamproye, A.; Hofinger, M.; Berthon, J. Y., et al. [Benzo(b)selenienyl-3] acetic acid: a potent synthetic auxin in somatic embryogenesis. C. R. Acad. Sci. Paris, Sér. III. 311:127–132; 1990.Google Scholar
  57. Lance, B.; Durley, R. C.; Reid, D. M., et al. Metabolism of [3H] gibberellin A20 in light- and dark-grown tobacco callus culture. Plant. Physiol. 58:387–392; 1976a.PubMedGoogle Scholar
  58. Lance, B.; Reid, D. M.; Thorpe, T. A. Endogenous gibberellins and growth of tobacco callus cultures. Physiol. Plant. 36:287–292; 1976b.CrossRefGoogle Scholar
  59. Libbenga, K. R.; Mennes, A. M. Hormone binding and signal transduction. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:272–297.Google Scholar
  60. Liu, J.; Mukherjee, I.; Reid, D. M. Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. III. The role of ethylene. Physiol. Plant. 78:268–276; 1990.CrossRefGoogle Scholar
  61. Liu, J. H.; Reid, D. M. Auxin and ethylene-stimulated adventitious rooting in relation to tissue sensitivity to auxin and ethylene production in sunflower hypocotyls. J. Exp. Bot. 43:1191–1198; 1992.CrossRefGoogle Scholar
  62. Maeda, E.; Thorpe T. A. Effects of various auxins on growth and shoot formation on tobacco callus. Phytomorphology 29:146–155; 1979.Google Scholar
  63. Mandava, N. B. Plant growth-promoting brassinosteroids. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39:23–52; 1988.CrossRefGoogle Scholar
  64. McGaw, B. A.; Burch, L. R. Cytokinin biosynthesis and metabolism. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:98–117.Google Scholar
  65. McKeon, T. A.; Fernandez-Maculet, J. C.; Yang, S. F. Biosynthesis and metabolism of ethylene. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:118–139.Google Scholar
  66. Milborrow, B. V.; Pryce, R. J. The brassins. Nature 243:46; 1973.CrossRefGoogle Scholar
  67. Nooden, L. D.; Leopold, A. C. Senescence and aging in plants. San Diego: Academic Press; 1988.Google Scholar
  68. Nour, K. A.; Thorpe, T. A. The effect of the gaseous state on bud induction and shoot multiplication in Eastern white cedar. Physiol. Plant. 90:163–172; 1994.CrossRefGoogle Scholar
  69. Orr, J.; Lynn, D. G. Biosynthesis of dehydrodiconiferyl alcohol glucosides: implications for the control of tobacco cell growth. Plant Physiol. 98:343–352; 1992.PubMedGoogle Scholar
  70. Pharis, R. P.; Ruichuan, Z.; Jiang, I. B. J., et al. Differential efficacity of gibberellins in flowering and vegetative shoot growth, including heterosis and inherently rapid growth. In: Karssen, C.; Van Loon, L.; Vreugdenhil, D., ed. Progress in plant growth regulation. Dordrecht: Kluwer Academic Publishers; 1992:13–27.Google Scholar
  71. Pierpoint, W. S. Salicylic acid and its derivatives in plants: medicines, metabolites and messenger molecules. Adv. Bot. Res. 20:163–235; 1994.Google Scholar
  72. Powell, G. K.; Hommes, N. K.; Kuo, J., et al. Inducible expression of cytokinin biosynthesis inAgrobacterium tumefaciens by plant phenolics. Mol. Plant-Microbe Interact. 1:235–242; 1988.PubMedGoogle Scholar
  73. Price, A. H.; Taylor, A.; Ripley, S. J., et al. Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 6:1301–1310; 1994.PubMedCrossRefGoogle Scholar
  74. Rademacker, W. Biochemical effects of plant growth retardants. In: Gausman, H. W., ed. Plant biochemical regulators. New York: Marcel Dekker, Inc.: 1992:169–200.Google Scholar
  75. Raskin, I. Role of salicyclic acid in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43:439–463; 1992.CrossRefGoogle Scholar
  76. Rastogi, R.; Sawhney, V. K. Polyamines and flower development in the male sterile stamenless-2 mutant of tomato (Lycopersicon esculentum Mill.). I. Levels of polyamines and their biosynthesis in normal and mutant flower. Plant Physiol. 93:439–445; 1990.PubMedCrossRefGoogle Scholar
  77. Ravniker, M.; Gogala, N. Regulation of potato meristem development by jasmonic acidin vitro. Plant Growth Regul. 9:233–236; 1990.CrossRefGoogle Scholar
  78. Reid, D. M.; Beall, F. D.; Pharis, R. P. Environmental cues in plant development. In: Bidwell, R. G. S., ed. Plant physiology, a treatise, Vol. X, Growth and development. San Diego: Academic Press; 1991:65–181.Google Scholar
  79. Reinbothe, S.; Mollenhauer, B.; Reinbothe, C. JIPs and RIPs: the regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell 6:1197–1209; 1994.PubMedCrossRefGoogle Scholar
  80. Roberts, D. R.; Flinn, B. S.; Webb, D. T., et al. Abscisic acid and indole-3-butyric acid regulation of maturation and accumulation of storage proteins in somatic embryos of interior spruce. Physiol. Plant. 78:355–360; 1990.CrossRefGoogle Scholar
  81. Robertson, A. J.; Reaney, M. J. T.; Wilen, R. W., et al. Effects of abscisic acid metabolites and analogs on freezing tolerance and gene expression in bromegrass (Bromus inermis Leyss) cell cultures. Plant Physiol. 105:823–830; 1994.PubMedCrossRefGoogle Scholar
  82. Rock, C. D.; Quatrano, R. S. Hormones during seed development. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:671–697.Google Scholar
  83. Ryan, C. A. The search for the proteinase inhibitor-inducing factor, PIIF. Plant Mol. Biol. 19:123–133; 1992.PubMedCrossRefGoogle Scholar
  84. Ryan, C. A.; Farmer, E. E. Oligosaccharide signals in plants: a current assessment. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42:651–674; 1991.CrossRefGoogle Scholar
  85. Sabater, B. Hormonal regulation of senescence. In: Purohit, S. S., ed. Hormonal regulation of plant growth and development, Vol. 1. India: Agro Botanical Publ.; 1985:169–217.Google Scholar
  86. Sembdner, G.; Parthier, B. The biochemistry and the physiological and molecular actions of jasmonates. Ann. Rev. Plant Physiol. Mol. Biol. 44:459–489; 1993.CrossRefGoogle Scholar
  87. Slocum, R. D.; Flores, H. E. Biochemistry and physiology of polyamines in plants. Boca Raton: CRC Press; 1991.Google Scholar
  88. Smith, T. A. Polyamines. Ann. Rev. Plant Physiol. 36:117–143; 1985.Google Scholar
  89. Sponsel, V. M. The biosynthesis and metabolism of gibberellins in higher plants. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995;66–97.Google Scholar
  90. Steen, D. A.; Chadwick, A. V. Ethylene effect in pica stem tissue. Evidence of microtubule mediation. Plant Physiol. 67:460–466; 1981.PubMedCrossRefGoogle Scholar
  91. Strnad, M.; Peters, W.; Beck, E., et al. Immunodetection and identification ofN 6-(o-hydroxybenzylamino) purine as a naturally occurring cytokinin inPopulux × canadensis Moench cvRobusta leaves. Plant Physiol. 99:74–80; 1992.PubMedGoogle Scholar
  92. Tamas, I. A. Hormonal regulation of apical dominance. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:572–597.Google Scholar
  93. Thompson, M. R.; Thorpe, T. A. Metabolic and non-metabolic roles of carbohydrates. In: Bonga, J. M.; Durzan, D. J., ed. Tissue culture in forestry, Vol. 1 Dordrecht: Martinus Nijhoff/Dr. W. Junk Publ.; 1986:89–112.Google Scholar
  94. Thorpe, T. A. The current status of plant tissue culture. In: Bhojwani, S. S., ed. Plant tissue culture: applications and limitations. Amsterdam: Elsevier Science Publishers; 1990;1–33.Google Scholar
  95. Thorpe, T. A.; Murashige, T. Some histochemical changes underlying shoot initiation in tobacco callus cultures. Can. J. Bot. 48:277–285: 1970.Google Scholar
  96. Tran Thanh Van, K.; Toubart, P.; Cousson A., et al. Manipulation of morphogenic pathways of tobacco explants by oligosaccharins. Nature 314:615–617; 1985.CrossRefGoogle Scholar
  97. Tran Thanh Van, K.; Trinh, T. H. Organogenic differentiation. In: Bhojwani, S. S., ed. Plant tissue culture: applications and limitations. Amsterdam: Elsevier Science Publishers; 1990:34–53.Google Scholar
  98. Tung, P.; Hooker, T. S.; Tampe, P. A., et al. Jasmonic acid: effects on growth and development of isolated tomato roots cultured in vitro. Int. J. Plant Sci. (in press).Google Scholar
  99. Turbicio, A. F.; Campers, J. L.; Figueras, X., et al. Polyamines and morphogenesis in monocots. In: Roubelakis-Angelakis, K. A.; Tran Thanh Van, K., ed. Morphogenesis in plants: molecular approaches. New York: Plenum Press; 1993:113–135.Google Scholar
  100. Vasil, I. K.; Thorpe, T. A., ed. Plant cell and tissue culture. Dordrecht: Kluwer Academic Publishers; 1994.Google Scholar
  101. Veen, H.; van de Geijn, S. C. Mobility and ionic form of silver as related to longevity of cut carnations. Planta. 140:93–96; 1978.CrossRefGoogle Scholar
  102. Venis, M. A.; Napier, R. M. Auxin receptors: recent developments. J. Plant Growth Regul. 10:329–340; 1991.CrossRefGoogle Scholar
  103. Vesely, J.; Havlicek, L.; Strnad, M., et al. Inhibition of cyclin-dependent kinases by purine analogues. Eur. J. Biochem. 224:771–786; 1994.PubMedCrossRefGoogle Scholar
  104. Walton, C. D.; Li Y. Abscisic acid biosynthesis and metabolism. In: Davies, P. J., ed. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995:140–157.Google Scholar
  105. Wilen, R. W.; Hays, D. B.; Mandel, R. M., et al. Competitive inhibition of abscisic acid-regulated gene expression by stereoisomeric acetylenic analogs of abscisic acid. Plant Physiol. 101:469–476; 1993.PubMedGoogle Scholar
  106. Woo, Y. M.; Wick, S. M. Effects of benlate 50 DF on microtubes of cucumber root tip cells and on growth of cucumber seedlings. Amer. J. Bot. 82:496–503; 1995.CrossRefGoogle Scholar
  107. Wright, S. T. C. The effect of 6-benzyladenine and leaf-aging treatments on the levels of stress-induced ethylene emanating from witled wheat leaves. Planta 144:179–188; 1979.CrossRefGoogle Scholar
  108. Ziv, M. The use of growth retardants for the regulation and acclimatization ofin vitro plants. In: Karssen, C. M.; Van Loon, L. C.; Vreugdenhil, D., ed. Progress in plant growth regulation. Dordrecht: Kluwer Academic Publishers; 1992:809–817.Google Scholar
  109. Ziv, M.; Ariel, T. Bud proliferation and plant regeneration in liquid-cultured Philodendron treated with ancymidol and paclobutrazol. J. Plant Growth Regul. 10:53–57; 1991.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 1996

Authors and Affiliations

  • Thomas Gaspar
    • 1
  • Claire Kevers
    • 1
  • Claude Penel
    • 2
  • Hubert Greppin
    • 2
  • David M. Reid
    • 3
  • Trevor A. Thorpe
    • 3
  1. 1.Hormonologie végétale, Institut de Botanique B 22Université de LiègeLiègeBelgium
  2. 2.Université de GenèveGenève 4Switzerland
  3. 3.Plant Physiology Research Group, Department of Biological SciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations