Journal d’Analyse Mathématique

, Volume 52, Issue 1, pp 117–132

Quasilines and conformal mappings

  • José L. Fernández
  • Juha Heinonen
  • Olli Martio
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. V. Ahlfors,Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, 1966.MATHGoogle Scholar
  2. 2.
    A. Baernstein,Integral means, univalent mappings and circular symmetrization, Acta Math.133 (1974), 139–170.CrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Baernstein,199 Problems in Linear and Complex Analysis, Lecture Notes in Mathematics, No. 1043, Springer-Verlag, Berlin, 1987.Google Scholar
  4. 4.
    B. Brown-Flinn,Hyperbolic convexity and level sets of analytic functions, Indiana Univ. Math. J.32 (1983), 831–841.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. Coifman and C. Fefferman,Weighted norm inequalities for maximal functions and singular integrals, Studia Math.51 (1974), 241–250.MATHMathSciNetGoogle Scholar
  6. 6.
    G. David,Opérateurs intégraux singuliers sur certain courbes du plan complexe, Ann. Sci. Ec. Norm. Super.17 (1984), 157–189.MATHGoogle Scholar
  7. 7.
    G. David,Noyau de Cauchy et opératuers de Calderón-Zygmund, These d'Etat, Université de Paris-Sud, Orsay, 1986.Google Scholar
  8. 8.
    J. L. Fernández and D. H. Hamilton,Lengths of curves under conformal mapping, Comm. Math. Helv.62 (1987), 122–134.MATHCrossRefGoogle Scholar
  9. 9.
    J. L. Fernández and M. Zinsmeister,Ensembles de niveau des representations conformes, C. R. Acad. Sci. Paris, to appear.Google Scholar
  10. 10.
    J. B. Garnett,Bounded Analytic Functions, Academic Press, New York, 1981.MATHGoogle Scholar
  11. 11.
    J. B. Garnett, F. W. Gehring and P. W. Jones,Conformally invariant length sums, Indiana Univ. Math. J.32 (1983), 809–829.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    F. W. Gehring,Characteristic Properties of Quasidisks, Les Presses de l'Université de Montréal, Montréal, 1982.MATHGoogle Scholar
  13. 13.
    F. W. Gehring and O. Martio,Quasiextremal distance domains and extensions of quasiconformal mappings, J. Analyse Math.45 (1985), 181–206.MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    V. M. Gol'dstein and S. K. Vodop'yanov,Prolongement des fonctions L 1p et applications quasiconformes, C. R. Acad. Sci. Paris290 (1980), 453–456.MATHMathSciNetGoogle Scholar
  15. 15.
    D. Jerison and C. Kenig,Hardy spaces, A and signular integrals on chord-arc curves, Math. Scand.50 (1982), 221–247.MATHMathSciNetGoogle Scholar
  16. 16.
    W. K. Hayman and G. Wu,Level sets of univalent function, Comm. Math. Helv.56 (1981), 366–403.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    O. Lehto and K. Virtanen,Quasiconformal Mappings in the Plane, Springer-Verlag, Berlin, 1973.MATHGoogle Scholar
  18. 18.
    J. McMillan,Boundary behaviour in conformal mapping, Proc. of N.R.L. Conference in Classical Function Theory, Washington, 1970.Google Scholar
  19. 19.
    R. Nevanlinna,Analytic Functions, Springer-Verlag, Berlin, 1970.MATHGoogle Scholar
  20. 20.
    Ch. Pommerenke,Boundary behaviour of conformal mappings, inAspects of Contemporary Complex Analysis, Academic Press, New York, 1982.Google Scholar
  21. 21.
    Ch. Pommerenke,Univalent Functions, Vandenhoeck und Ruprecht, Göttingen, 1975.MATHGoogle Scholar
  22. 22.
    M. Zinsmeister,Domaines de Lavrentiev, These d'Etat, Université de Paris-Sud, Orsay, 1985.Google Scholar

Copyright information

© Hebrew Univeristy 1989

Authors and Affiliations

  • José L. Fernández
    • 1
    • 2
  • Juha Heinonen
    • 3
  • Olli Martio
    • 3
    • 4
  1. 1.Department of MathematicsUniversity of MarylandCollege ParkUSA
  2. 2.Centre de Recerca MatemáticaUniversitat Autónoma de BarcelonaBarcelonaSpain
  3. 3.Department of MathematicsUniversity of JyväskyläJyväskyläFinland
  4. 4.Institut für Angewandte Mathematik der Universität BonnBonn 1FRG

Personalised recommendations