Journal d’Analyse Mathématique

, Volume 70, Issue 1, pp 267–324 | Cite as

Spectral deformations of one-dimensional Schrödinger operators

  • F. Gesztesy
  • B. Simon
  • G. Teschl
Article

Abstract

We provide a complete spectral characterization of a new method of constructing isospectral (in fact, unitary) deformations of general Schrödinger operatorsH=−d2/dx2+V in\(H = - d^2 /dx^2 + V in \mathcal{L}^2 (\mathbb{R})\). Our technique is connected to Dirichlet data, that is, the spectrum of the operatorHD onL2((−∞,x0)) ⊕L2((x0, ∞)) with a Dirichlet boundary condition atx0. The transformation moves a single eigenvalue ofHD and perhaps flips which side ofx0 the eigenvalue lives. On the remainder of the spectrum, the transformation is realized by a unitary operator. For cases such asV(x)→∞ as |x|→∞, whereV is uniquely determined by the spectrum ofH and the Dirichlet data, our result implies that the specific Dirichlet data allowed are determined only by the asymptotics asE→∞.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Baumgartner,Level comparison theorems, Ann. Phys.168 (1986), 484–526.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its and V. B. Matveev,Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994.MATHGoogle Scholar
  3. [3]
    D. Bolle, F. Gesztesy, H. Grosse, W. Schweiger and B. Simon,Witten index, axial anomaly, and Krein's spectral shift function in supersymmetric quantum mechanics, J. Math. Phys.28 (1987), 1512–1525.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    M. Buys and A. Finkel,The inverse periodic problem for Hill's equation with a finite-gap potential, J. Differential Equations55 (1984), 257–275.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    M. M. Crum,Associated Sturm-Liouville systems, Quart. J. Math. Oxford (2)6 (1955), 121–127.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    G. Darboux,Sur une proposition relative aux équations linéaires, C. R. Acad. Sci. (Paris)94 (1882), 1456–1459.Google Scholar
  7. [7]
    P. A. Deift,Applications of a commutation formula, Duke Math. J.45 (1978), 267–310.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    P. Deift and E. Trubowitz,Inverse scattering on the line, Comm. Pure Appl. Math.32 (1979), 121–251.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    M. S. P. Eastham and H. Kalf,Schrödinger-Type Operators with Continuous Spectra, Pitman, Boston, 1982.MATHGoogle Scholar
  10. [10]
    F. Ehlers and H. Knörrer,An algebro-geometric interpretation of the Bäcklund transformation of the Korteweg-de Vries equation, Comment. Math. Helv.57 (1982), 1–10.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    N. M. Ercolani and H. Flaschka,The geometry of the Hill equation and of the Neumann system, Philos. Trans. Roy. Soc. London Ser. A315 (1985), 405–422.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    A. Finkel, E. Isaacson and E. Trubowitz,An explicit solution of the inverse problem for Hill's equation, SIAM J. Math. Anal.18 (1987), 46–53.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    N. E. Firsova,On solution of the Cauchy problem for the Korteweg-de Vries equation with initial data the sum of a periodic and a rapidly decreasing function, Math. USSR Sbornik63 (1989), 257–265.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    H. Flaschka and D. W. McLaughlin,Some comments on Bäcklund transformations, canonical transformations, and the inverse scattering method, Lecture Notes in Math, vol. 515 (R.M. Miura, ed.), Springer, Berlin, 1976, pp. 252–295.CrossRefGoogle Scholar
  15. [15]
    C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura,Korteweg-de Vries equation and generalizations, VI. Methods for exact solution, Comm. Pure Appl. Math.27 (1974), 97–133.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    I. M. Gel'fand and B. M. Levitan,On the determination of a differential equation from its spectral function, Amer. Math. Transl. Ser. 21 (1955), 253–304.MathSciNetMATHGoogle Scholar
  17. [17]
    F. Gesztesy,On the modified Korteweg-de Vries equation, inDifferential Equations with Applications in Biology, Physics, and Engineering (J.A. Goldstein, F. Kappel and W. Schappacher, eds.), Marcel Dekker, New York, 1991, pp. 139–183.Google Scholar
  18. [18]
    F. Gesztesy,Quasi-periodic, finite-gap solutions of the modified Korteweg-de Vries equation, inIdeas and Methods in Mathematical Analysis, Stochastics, and Applications (S. Albeverio, J. E. Fenstad, H. Holden and T. Lindstrøm, eds.), Vol. 1, Cambridge Univ. Press, Cambridge, 1992, pp. 428–471.Google Scholar
  19. [19]
    F. Gesztesy,A complete spectral characterization of the double commutation method J. Funct. Anal.117 (1993), 401–446.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    F. Gesztesy, M. Krishna and G. Teschl,On isospectral sets of Jacobi operators, to appear in Comm. Math. Phys.Google Scholar
  21. [21]
    F. Gesztesy, R. Nowell and W. Pötz,One-dimensional scattering theory for quantum systems with nontrivial spatial asymptotics, to appear in Adv. Differential Equations.Google Scholar
  22. [22]
    F. Gesztesy, W. Schweiger and B. Simon,Commutation methods applied to the mKdV-equation, Trans. Amer. Math. Soc.324 (1991), 465–525.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    F. Gesztesy and B. Simon,Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators, Trans. Amer. Math. Soc.348 (1996), 349–373.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    F. Gesztesy and B. Simon,The xi function, Acta Math.176 (1996), 49–71.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    F. Gesztesy, B. Simon and G. Teschl,Zeros of the Wronskian and renormalized oscillation theory, Amer. J. Math.118 (1996), 571–594.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    F. Gesztesy and R. Svirsky(m)KdV-solitons on the background of quasi-periodic finite-gap solutions, Mem. Amer. Math. Soc.118 (1995), no. 563.MathSciNetGoogle Scholar
  27. [27]
    F. Gesztesy and G. Teschl,On the double commutation method, Proc. Amer. Math. Soc.124 (1996), 1831–1840.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    F. Gesztesy and G. Teschl,Commutation methods for Jacobi operators, J. Differential Equations128 (1996), 252–299.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    F. Gesztesy and R. Weikard,Spectral deformations and soliton equations, inDifferential Equations with Applications in Mathematical Physics (W. F. Ames, E. M. Harrell and J. V. Herod, eds.), Academic Press, Boston, 1993, pp. 101–139.Google Scholar
  30. [30]
    F. Gesztesy and Z. Zhao,On critical and subcritical Sturm-Liouville operators, J. Funct. Anal.98 (1991), 311–345.MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    H. Grosse and A. Martin,Particle Physics and the Schrödinger Equation, Cambridge University Press, Cambridge, to appear.Google Scholar
  32. [32]
    K. Iwasaki,Inverse problem for Sturm-Liouville and Hill's equations, Ann. Mat. Pure Appl. (4)149 (1987), 185–206.MATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    C. G. J. Jacobi,Zur Theorie der Variationsrechnung und der Differentialgleichungen, J. Reine Angew. Math.17 (1837), 68–82.MATHGoogle Scholar
  34. [34]
    J. Kay and H. E. Moses,Reflectionless transmission through dielectrics and scattering potentials, J. Appl. Phys.27 (1956), 1503–1508.MATHCrossRefGoogle Scholar
  35. [35]
    E. A. Kuznetsov and A. V. Mikhailov,Stability of stationary waves in nonlinear weakly dispersive media, Soviet Phys. JETP40 (1975), 855–859.MathSciNetGoogle Scholar
  36. [36]
    W. Leighton,On self-adjoint differential equations of second order, J. London Math. Soc.27 (1952), 37–47.MATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    B. M. Levitan,Inverse Sturm-Liouville Problems, VNU Science Press, Utrecht, 1987.MATHGoogle Scholar
  38. [38]
    B. M. Levitan,Sturm-Liouville operators on the whole line, with the same discrete spectrum, Math. USSR Sbornik60 (1988), 77–106.MATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    V. A. Marchenko,Sturm-Liouville Operators and Applications, Birkhäuser, Basel, 1986.MATHGoogle Scholar
  40. [40]
    H. P. McKean,Variation on a theme of Jacobi, Comm. Pure Appl. Math.38 (1985), 669–678.MATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    H. P. McKean,Geometry of KdV (1): Addition and the unimodular spectral classes, Rev. Mat. Iberoamericana2 (1986), 235–261.MATHMathSciNetGoogle Scholar
  42. [42]
    H. P. McKean,Geometry of KdV (2): Three examples, J. Statist. Phys.46 (1987), 1115–1143.CrossRefMathSciNetMATHGoogle Scholar
  43. [43]
    H. P. McKean,Is there an infinite-dimensional algebraic geometry? Hints from KdV, inTheta Functions (L. Ehrenpreis and R.C. Gunning, eds.), Proc. Symp. Pure Math., Vol. 49, Amer. Math. Soc., Providence, RI, 1989, pp. 27–37.Google Scholar
  44. [44]
    H. P. McKean,Geometry of KdV (3): Determinants and unimodular isospectral flows, Comm. Pure Appl. Math.45 (1992), 389–415.MATHCrossRefMathSciNetGoogle Scholar
  45. [45]
    H. P. McKean and E. Trubowitz,The spectral class of the quantum-mechanical harmonic oscillator, Comm. Math. Phys.82 (1982), 471–495.MATHCrossRefMathSciNetGoogle Scholar
  46. [46]
    H. P. McKean and P. van Moerbeke,The spectrum of Hill's equation, Invent. Math.30 (1975), 217–274.MATHCrossRefMathSciNetGoogle Scholar
  47. [47]
    S. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov,Theory of Solitons, Consultants Bureau, New York, 1984.MATHGoogle Scholar
  48. [48]
    J. Pöschel and E. Trubowitz,Inverse Spectral Theory, Academic Press, Boston, 1987.MATHGoogle Scholar
  49. [49]
    J. Ralston and E. Trubowitz,Isospectral sets for boundary value problems on the unit interval, Ergodic Theory & Dynamical Systems8 (1988), 301–358.MathSciNetCrossRefGoogle Scholar
  50. [50]
    U.-W. Schmincke,On Schrödinger's factorization method for Sturm-Liouville operators. Proc. Roy. Soc. Edinburgh Sect. A80 (1978), 67–84.MathSciNetMATHGoogle Scholar
  51. [51]
    B. Simon,Spectral, analysis of rank one perturbations and applications, inCRM Proc. Lecture Notes, Vol. 8 (J. Feldman, R. Froese and L. Rosen, eds.), Amer. Math. Soc., Providence, RI, 1995, pp. 109–149.Google Scholar
  52. [52]
    G. Teschl,Oscillation and renormalized oscillation theory for Jacobi operators, to appear in J. Differential Equations.Google Scholar
  53. [53]
    G. Teschl,Spectral deformations of Jacobi operators, preprint, 1996.Google Scholar

Copyright information

© Hebrew University of Jerusalem 1996

Authors and Affiliations

  • F. Gesztesy
    • 1
  • B. Simon
    • 2
  • G. Teschl
    • 3
  1. 1.Department of MathematicsUniversity of MissouriColumbiaUSA
  2. 2.Division of Physics, Mathematics and AstronomyCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Institut für Reine und Angewandte MathematikRWTH AachenAachenGermany

Personalised recommendations