Il Nuovo Cimento A (1965-1970)

, Volume 62, Issue 3, pp 722–754 | Cite as

Revision of the relativistic dynamics with variable rest mass and application to relativistic thermodynamics

  • G. Cavalleri
  • G. Salgarelli


For point bodies with variable rest mass it is shown that the definition of forcem0dU i /dτ=Fi is better than the usual d(m0Ui))/dτ=Fi and the explicit equation of motion is given bym0dUi/dτ=F i ext +(z−1U i B Ui)dm0/dτ, where the external forceF i ext has been separated from the reaction force due to the ejected mass,U i B is the four-velocity of the mass centre of the ejected mass andz=U s B U2c−2. For extended bodies it is shown that the von Laue mechanical-energy flux (in the usual «synchronous» formulation) is not plausible. Moreover a new formulation, called «asynchronous» is given. By this formulation many problems receive an immediate solution. The resultant «asynchronous» force density is always orthogonal to the four-velocity, and the equations of motion for continuous media turn out to be formally equal to the classical equations. Expanding the new equations to the first order when the pressure is a regular function of space and time, one obtains the usual «synchronous» equations. In the asynchronous formulation, all quantities relevant to extended bodies transform in a covariant way. In particular, momentum and energy turn out to have the expression proposed by Rohrlich. The above concepts are applied to relativistic thermodynamics. It is shown that, for point bodies, heat transforms as in the recent Ott formulation. For extended bodies, in the usual «synchronous» formulation, heat transforms as pointed out by von Laue. In the «asynchronous» formulation we always haveQ=γQ0. TemperatureT is considered invariant and the relation dQ=TdS valid in the rest system only.


Lorentz Transformation Relativistic Dynamic Extended Body Rest System Point Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Улучшение релятивистской динамики с переменной массой покоя и применение к релятивистской термодинамике


Показывается, что для точечных тел с переменной массой покоя определения силыm0dUi/dr=Fi является лучше, чем обычное определение d(m0Ui)/dr=Fi, и приводится точное уравнение движенияm0dUi/dr=F i ext +(z−1U i B Ui)dm0/dr где внешняя силаF i ext была отделена от силы реакции, обусловленной испущенной массой,U i B представляет четырех-скорость центра масс для испущенной массы иz=U 8 B U3c−2. Для протяженных тел показывается, что механический поток энергии фон Лауэ в обычной «синхронной» формулировке не является правдоподобным. Кроме того, приводится новая формулировка, называемая «асинхронной». С помощью этого формализма непосредственно получаются решения многих проблем. Результирующая «асинхронная» плотность силы оказывается всегда ортогональной четырех-скорости, и соответствующие уравнения движения для непрерывной среды формально совпадают с классическими уравнениями. Разлагая новое уравнение до первого порядка, когда давление является регулярной функцией пространства и времени, можно получить обычные «синхронные» уравнения. В асинхронном формализме все величины, относящиеся к протяженным телам преобразуются ковариантным образом. В частности, оказывается, что импульс и энергия имеют то же выражение, как было предложено Рорлихом. Вышеуказанные концепции применяются к релятивистской термодинамике. Показывается, что для точечных тел тепло преобразуется согласно преобразованию в недавней формулировке Отта. Для протяженных тел в обычном «синхронном» формализме тепло преобразуется, как указано по фон Лауэ. В «асинхронном» формализме всегдаQQ0. температура рассматривается инвариантной, и соотношение dQ=TdS справедливо только в системе покоя.


Per corpi puntiformi con massa a riposo variabile, viene mostrato che la definizione di forzam0dUi/dτ=Fi è migliore dell’usuale d(m0Ui)/dτ=Fi e che l’equazione di moto esplicita è data dam0dUi/dτ=F i ext +(z−1U i B Ui)dm0/dτ, dove la forza esternaF i ext è stata separata dalla forza di reazione dovuta alla massa espulsa,U i B è la tetravelocità del centro di massa della massa eiettata ez=U s B U5c−2. Per corpi estesi viene mostrato che il flusso di energia meccanica di von Laue (nell’usuale formulazione «sincrona») non è plausibile. Inoltre viene data una nuova formulazione, chiamata «asincrona». Per mezzo di questa formulazione molti problemi ricevono una soluzione immediata. La densità della forza risultante «asincrona» è sempre ortogonale alla tetravelocità e le equazioni di moto per i mezzi continui risultano formalmente uguali alle equazioni classiche. Sviluppando al prim’ordine le nuove equazioni quando la pressione è una funzione regolare dello spazio e del tempo, si ottengono le usuali equazioni «sincrone». Nella formulazione asincrona tutte le grandezze relative a corpi estesi si trasformano in modo covariante. In particolare la quantità di moto e l’energia vengono ad avere l’espressione proposta da Rohrlich. I concetti di cui sopra vengono applicati alla termodinamica relativistica. Viene mostrato che per corpi puntiformi, il calore si trasforma come nella recente formulazione di Ott. Per corpi estesi e nell’usuale formulazione sincrona, il calore si trasforma come messo in evidenza da von Laue. Nella formulazione asincrona si ha senpreQ=jQ0. La temperaturaT è considerata invariante e la relazione dQ=TdS valida solo nel sistema di riposo.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    C. Møller:The Theory of Relativity, Sect.38 (Oxford, 1960), p. 105;J. L. Synge:Relativity, The Special Theory, Chap. VI, Sect.3 and4 (Amsterdam, 1956), p. 167;J. Aharoni:The Special Theory of Relativity, Chap. V, Sect.3 (Oxford, 1959), p. 143;M. Von Laue,La théorie de la Relativité, vol I, Chap. VII, Sect.29, IV Ed. (Paris, 1942), p. 249;R. C. Tolman:Relativity, Thermodynamics and Cosmology (London, 1934), p. 46.Google Scholar
  2. (3).
    T. Levi-Civita:Rend. Lincei,8, 329, 621 (1928);A. Sommerfeld:Mechanics, Lectures on Theoretical Physics, vol. I (New York, 1952), p. 28;S. L. Loney:Dynamics of a Particle and of Rigid Bodies (University Press, reprint of 1960), p. 124;K. B. pomeranz:Amer. Journ Phys.,32, 386 (1964);J. A. Van den Akker:Amer. Journ. Phys.,32, 387 (1964).Google Scholar
  3. (4).
    K. B. Pomeranz:Amer. Journ. Phys.,32, 955 (1964); also34, 565 (1966). The usual «rocket» equation (see for exampleR. L. Haflman:Dynamics (Reading, Mass., 1962), p. 542, is a particular case of Pomeranz’ equation.ADSCrossRefGoogle Scholar
  4. (5).
    The «renormalization» factorz is the same that appears in the relativistic equations of motion with resistance forces of Newtonian type, proposed by one of us in a preceding paper (G. Cavalleri:Amer. Journ. Phys.,34, 901, (1966)). This factor has been overlooked byM. Pellegrini:Istituto Lombardo (Rend. Sc.),99, 243 (1965), and taken into account only byG. Carini:Istituto Lombardo (Rend. Sc.), A101, 491 (1967), however, after one of us (G. Cavalleri:Boll. SIF,50, 102, 8c 3 (Oct. 1966) presented eq. (3) at the Italian Physics Meeting of 1966.ADSCrossRefGoogle Scholar
  5. (6).
    Classically a momentum may be equalized to an arbitrary mass multiplied by a velocity parallel to the momentum. This does not occur in relativity because the four-momentum includes both classical momentum and energy. Notice moreover that thevelocity of the mass centre is unique, whereas itsposition is not unique (see for exampleMøller in ref. (1)64).Google Scholar
  6. (7).
    K. B. Pomeranz: in the footnote (1)C. Møller:The Theory of Relativity, Sect.38 (Oxford, 1960), p. 105 of the first paper of ref. (4), reports, without any criticism, Tolman’s view point (ref. (1)Relativity, Thermodynamics and Cosmology (London, 1934), p. 46, relevant to a particle proper-mass variation because of energy exchange (rest-mass variation of relativistic origin).Tolman specifies that in this case the proper mass of the particle must be within the differentiation with respect to time.ADSCrossRefGoogle Scholar
  7. (8).
    J. L. Synge:Relativity, The Special Theory, Chap. II, Sect.15 and Chap. VIII, Sect.8 (Oxford, 1960).Google Scholar
  8. (10).
    P. Caldirola:Suppl. Nuovo Cimento,3, 297 (1956).MathSciNetCrossRefGoogle Scholar
  9. (11).
    See for example Sect.5, c. 3 ofC. Cavalleri:Alta Frequenza,34, 364–110E (1965).Google Scholar
  10. (12).
    F. Rohrlich:Nuovo Cimento,45 B, 76 (1966).ADSCrossRefGoogle Scholar
  11. (13).
    A. Gamba:Amer. Journ. Phys.,35, 83 (1967).ADSCrossRefGoogle Scholar
  12. (14).
    A. Staruszkiewcz:Nuovo Cimento,45 A, 684 (1966).ADSCrossRefGoogle Scholar
  13. (15).
    H. Arzeliès:Nuovo Cimento,35, 783 (1965).CrossRefGoogle Scholar
  14. (16).
    M. von Laue:Verhandl. Deutsch. Phys. Ges. (1911), p. 513;P. S. Epstein:Ann. der Phys.,36, 779 (1911). The question is also discussed in text books such as:R. C. Tolman:Relativity, Thermodynamics, cosmology (Oxford, 1950), p. 79;H. Arzeliès:Dynamique relativiste, fasc. I (Paris, 1957), p. 29;R. Becker:Teoria dell’elettricità, vol. II, Sect.99 b) (Frienze, 1950), p. 434;W. K. H. Panofsky andM. Phillips:Classical Electricity and Magnetism II Eb., Sect.17-5 (Reading, Mass., London, 1962), p. 317. See alsoC. Møller in ref. (34).Google Scholar
  15. (17).
    T. W. B. Kibble:Nuovo Cimento,41 B, 72 and 84 (1966).ADSCrossRefGoogle Scholar
  16. (18).
    R. Penney:Nuovo Cimento,43 A, 911 (1966).ADSCrossRefGoogle Scholar
  17. (19).
    See for exampleW. K. H. Panofsky andM. Phillips: ref. (16)Classical Electricity and Magnetism, II Ed., Sect.95, (Reading, Mass., London, 1962), p. 177.Google Scholar
  18. (20).
    See for exampleC. Møller in ref. (1), Chap. VI, Sect.95, p. 177.Google Scholar
  19. (21).
    Equation (16) can be obtained by substituting eq. (70) ofMøller (ref. (20)). into eq. (57) of the same reference.Google Scholar
  20. (22).
    The elastic displacements can be neglected if the rod is considered as rigid in the sense ofM. Born:Ann. der Phys.,30,1, 840, (1909). However no material is rigid. For the material with the maximum degree of rigidity in agreement with the requirements of special relativity, see, for example;G. Cavalleri:Nuovo Cimento,53 B, 415 (1968), where also a rotatory motion is considered.ADSCrossRefGoogle Scholar
  21. (23).
    The von Laue flux has been questioned only byArzelies (see ref. (15)) but in a completely different way. In particularArzelies noticed that the von Laue flux velocity is not defined.CrossRefGoogle Scholar
  22. (25).
    See, for example, eq. (110) of Sect.67, Ch. VI, p. 183 ofC. Møller: ref. (1).Google Scholar
  23. (26).
    G. Cavalleri andG. Spinelli: to be published.Google Scholar
  24. (27).
    M. Planck:Ann. der Phys.,76, 1 (1908). Planck first communicated this work at a meeting of the Preussische Akademie der Wissenschaften on June 13 (1907).ADSCrossRefGoogle Scholar
  25. (28).
    A. Einstein:Jb. Radioakt.,4, 411 (1907).Google Scholar
  26. (29).
    K. von Mosengeil:Ann. der Phys.,22, 867 (1907).CrossRefGoogle Scholar
  27. (30).
    M. Von Laue:Die Relativitätstheorie (Braunschweig, 1961), 7th ed. (first ed. 1911). See footnotes on p. 138 and p. 177, 178.Google Scholar
  28. (31).
    See for exampleW. Pauli:Theory of Relativity (New York, 1958), Sect.49;C. Møller; in ref. (1)The Theory of Relativity, Sect.38 and78 (Oxford, 1960), p. 105;R. C. Tolman: in ref. (1), Sect.69;O. Costa de Beauregard:La théorie de la relativité, Sect.4, 19 (Paris, 1949), p. 134.Google Scholar
  29. (32).
    H. Ott:Zeits. Phys.,175, 70 (1963).ADSCrossRefGoogle Scholar
  30. (33).
    L. de Broglie:Compt. Rend.,262, B1235 (1966);263, B 1351 (1966);M. P. Hillion:Compt. Rend.,263, B 1358 (1966);R. K. Pathria:Proc. Phys. Soc.,88, 791 (1966);A. Staruszkievicz: in ref. (14);Nuovo Cimento,45 A, 684 (1966)R. Penney: in ref. (18);L. de Broglie:Compt. Rend.,264, B 1173 (1967);265, B 589 (1967).Google Scholar
  31. (34).
    H. Arzeliès:Nuovo Cimento,35, 792 (1965);40 B, 333 (1965);41 B, 81 (1966);A. Gamba:Nuovo Cimento,37, 1792 (1965);W. G. Sutcliffe:Nuovo Cimento,39, 683 (1965);A. Børs:Proc. Phys. Soc.,86, 1141 (1965);M. R. Marchal:Compt. Rend.,262, A 982 (1966);C. Møller:Kong. Danske Vid. Medd.,36, 1 (1967).CrossRefGoogle Scholar
  32. (35).
    F. Rohrlich: in ref. (12) ;L. A. Schmid:Nuovo Cimento,47 B, 1 (1967);J. H. Eberly andA. Kujawski:Phys. Rev.,155, 155 (1967).ADSCrossRefGoogle Scholar
  33. (36).
    P. T. Landsberg:Nature,212, 571 (1966);Proc. Phys. Soc.,89, 1007 (1966);P. T. Landsberg andK. A. Johns:Nuovo Cimento,52 B, 28 (1967). AlsoJ. Lindhard (Physica,38, 635 (1968)) concludes that temperature is invariant but he does not consider heat transformations. Following a still different way, alsoN. G. van Kampen:Phys. Rev.,173, 295 (1968), reaches the same conclusion.ADSCrossRefGoogle Scholar
  34. (37).
    It is significant that various authors have reached different conclusions by statistical arguments. For examplePathria (ref. (33)) is strongly in favour andEberly andKujawsky (ref. (35))Phys. Rev.,155, 155 (1967) are rather in favour of the new formulation, whereasBørs is strongly in favour andTouschek (riassunti Italian Physics Meeting, SIF Bologna (1967)) is rather in favour of the new formulation. On the other handLandsberg (ref. (36)), also by statistical argument, reached conclusions different from those of the mentioned authors.ADSCrossRefGoogle Scholar
  35. (38).
    See for exampleM. R. Marchal in ref. (34) andL. de Broglie:Compt. Rend.,263, B 1351 (1966);265, B 589 (1967). In this last paper,de Broglie, because of a «lapsus» in elementary physics, considers that pressure is zero inside a fluid, the molecules of which have isotropic random velocities.Google Scholar
  36. (39).
    L. de Broglie:Compt. Rend.,263 B, 1351 (1966), considers the following different decompositionW =j −1 W 0 +γβ 2 W 0. But what is the meaning of the product of β by the momentum γβW 0 which, moreover, does not reduce to the classical kinetic energy for β→0?Google Scholar
  37. (42).
    L. A. Schmid: (see ref. (35) does not precise the form of the termU B z −1dm 0/dτ of our eq. (9), but indicates it simply byc 2dQ/dτ which is valid only whenU B=U (isotropic case).ADSCrossRefGoogle Scholar
  38. (43).
    H. Arzeliès: in ref. (34).R. Penney (ref. (18)Nuovo Cimento,43 A, 911 (1966)), because of a «lapsus» on a basic concept, does not consider the work of the horizontal forceF x because, he says, it is equilibrated by an internal force. But, following his reasoning, no external force can ever perform a work, since it is equilibrated by the corresponding local reaction. Thus even the compression work due to the pressurep 0 should be neglected.CrossRefGoogle Scholar
  39. (44).
    P. D. Noerdlinger:Nature,213, 1117 (1967).ADSCrossRefGoogle Scholar
  40. (45).
    J. H. Fremlin:Nature,213, 277 (1967).ADSCrossRefGoogle Scholar
  41. (46).
    I. P. Williams:Nature,213, 1118 (1967), operates a relativistic addition of velocities, considering that temperature is proportional to the mean square velocity relevant to any observer. But this definition, which even classically does not give temperature, includes the macroscopic kinetic energy in the thermal energy.ADSCrossRefGoogle Scholar
  42. (47).
    See for exampleJ. Aharoni in ref. (1), p. 30; alsoJ. E. Romain:Amer. Journ. Phys.,31, 576 (1963).MathSciNetGoogle Scholar

Copyright information

© Società Italiana di Fisica 1969

Authors and Affiliations

  • G. Cavalleri
    • 1
  • G. Salgarelli
    • 1
  1. 1.Istituto di Fisica Tecnica del Politecnico di MilanoMilano

Personalised recommendations