Advertisement

Folia Microbiologica

, Volume 47, Issue 5, pp 467–472 | Cite as

Biotransformation of trichloroethene by pure bacterial cultures

  • J. Růžička
  • J. Müller
  • D. Vít
  • V. Hutěčka
  • J. Hoffmann
  • H. Daťková
  • M. Němec
Papers
  • 44 Downloads

Abstract

From natural samples 11 isolates able to remove trichloroethene (CCl2CHl) from an aqueousenvironment were obtained which were capable of cometabolic degradation of CCl2CHCl by an enzyme system for phenol degradation. At an initial CCl2CHCl concentration of 1 mg/L, the resting cells of particular cultures degraded 33–94% CCl2CHCl during 1 d and their transformation capacity ranged from 0.3 to 3.1 mg CCl2CHCl per g organic fraction. An analysis of a mixed phenol-fed culture with an excellent trichloroethene-degrading ability found a markedly minority isolate represented in the consortium to be responsible for this property. This culture degraded CCl2CHCl even at a low inoculum concentration and attained a transformation capacity of 14.7 mg CCl2CHCl per g. The increase in chloride concentration after degradation was quantitative when compared with the decrease in organically bound chlorine. The degree of CCl2CHCl degradation was affected by Me2S2; this substance can significantly reduce the degrading ability of some tested cultures (>60%); however, it does not cause this inhibition with others.

Keywords

Me2S2 Phenol Degradation HONO Dimethyl Disulfide Degradation Ability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arciero D., Vannelli T., Logan M., Hooper A.B.: Degradation of trichloroethylene by the ammonia-oxidizing bacteriumNitrosomonas europeaea.Biochem. Biophys. Res. Commun. 159, 640–643 (1989).PubMedCrossRefGoogle Scholar
  2. Chang H.L., Alvarez-Cohen L.: Transformation capacities of chlorinated organics by mixed cultures enriched on methane, progane, toluene or phenol.Biotechnol. Bioeng. 45 440–449 (1995).CrossRefPubMedGoogle Scholar
  3. Dabrock B., Riedel J., Bertram J., Gottschalk G.: Isopropylbenzene (cumene)—a new substrate for the isolation of trichloroethene-degrading bacteria.Arch. Microbiol. 158, 9–13 (1992).PubMedCrossRefGoogle Scholar
  4. Ensign S.A., Hyman M.R., Arp D.J.: Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grownXanthobacter strain.Appl. Environ. Microbiol. 58, 3038–3046 (1992).PubMedGoogle Scholar
  5. Folsom B.R., Chapman P.J., Pritchard P.H.: Phenol and trichloroethylene degradation byPseudomonas cepacia G4: kinetics and interaction between substrates.Appl. Environ. Microbiol.,56, 1279–1285 (1990).PubMedGoogle Scholar
  6. Fries M.R., Forney L.J., Tiedje J.M.: Phenol- and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred.Appl. Environ. Microbiol..63, 1523–1530 (1997).PubMedGoogle Scholar
  7. Futamata H., Watanabe K., Harayama S.: Relationships between the trichlorethylene-degrading activities and the amino acid sequences of phenol hydroxylases in phenol-degrading bacteria.Battelle 1st Internat. Conf. on Remediation of Chlorinated and Recalcitrant Compounds, Monterey (CA) 1998.Google Scholar
  8. Ginzburg B., Chalifa I., Hadas O., Dor I., Lev O.: Formation of dimethyloligosulfides in lake Kinneret.Water Sci. Technol. 40, 73–78 (1999).CrossRefGoogle Scholar
  9. Ginzburg B., Chalifa I., Zohari T., Hadas O., Dor I., Lev O.: Identification of oligosulfide odorous compounds and their source in the sea of Galilee.Water Res. 32, 1789–1800 (1998).CrossRefGoogle Scholar
  10. Hopkins G.D., Munakata J., Semprini L., McCarty P.L.: Trichloroethylene concentration effects on pilot field-scalein situ groundwater bioremediation by phenol-oxidizing microorganisms.Environ. Sci. Technol. 27, 2542–2547 (1993).CrossRefGoogle Scholar
  11. Hopkins G.D., McCarty P.L.: Field evaluation ofin situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates.Environ. Sci. Technol. 29, 1628–1637 (1995).CrossRefGoogle Scholar
  12. Ishida H., Nakamura K.: Trichloroethylene degradation byRalstonia sp. KN1-10A constitutively expressing phenol hydroxylase: transformation products, NADH limitation, and product toxicity.J. Biosci. Bioeng. 89, 438–445 (2000).PubMedCrossRefGoogle Scholar
  13. Iwasaki I., Utsumi S., Ozawa T.: New colorimetric determination of chloride using mercuric thiocyanate and ferric ions.Bull. Chem. Soc. Japan. 25, 226 (1952).CrossRefGoogle Scholar
  14. Kyung K.H., Fleming H.P.: Antimicrobial activity of sulphur compounds derived from cabbage.J. Food. Prot. 60, 67–71 (1997).PubMedGoogle Scholar
  15. Saeki H., Akira M., Furuhashi K., Averhoff B., Gottschalk G.: Degradation of trichloroethylene by a linear-plasmid-encoded alkene monooxygenase inRhodococcus corallinus (Nocardia corallina) B-276.Microbiology 145, 1721–1730 (1999).PubMedCrossRefGoogle Scholar
  16. Schöller C., Molin S., Wilkins K.: Volatile metabolites from some gramnegative bacteria.Chemosphere 35, 1487–1495 (1997).PubMedCrossRefGoogle Scholar
  17. Shih C., Davey M.E., Zhou J., Tiedje J.M., Criddle C.S.: Effects of phenol feeding pattern on microbial community structure and cometabolism of trichloroethylene.Appl. Environ. Microbiol. 62, 2953–2960 (1996).PubMedGoogle Scholar
  18. Shurtliff M.M., Parkin G.F., Weathers L.J., Gibson D.T.: Biotransformation of trichloroethylene by a phenol-induced mixed culture.J. Environ. Eng. 122, 581–589 (1996).CrossRefGoogle Scholar
  19. Steffan R.J., Sperry K.L., Walsh M.T., Vainberg S., Condee C.W.: Field-scale evaluation ofin situ bioaugmentation for remediation of chlorinated solvents in groudwater.Environ. Sci. Technol. 33, 2771–2781 (1999).CrossRefGoogle Scholar
  20. Sun A.K., Hong J., Wood T.K.: Modeling trichloroethylene degradation by a recombinant pseudomonad expressing tolueneortho-monooxygenase in a fixed-film bioreactor.Biotechnol. Bioeng. 59, 40–51 (1998).PubMedCrossRefGoogle Scholar
  21. Sun A.K., Wood T.K.: Trichloroethylene degradation and mineralization by pseudomonads andMethylosinus trichosporium OB3b.Appl. Microbiol. Biotechnol. 45, 248–256 (1996).PubMedCrossRefGoogle Scholar
  22. Takami W., Horinouchi M., Nojiri H., Yamane H., Omori T.: Evaluation of trichloroethylene degradation byE. coli transformed with dimethylsulphide monooxygenase genes and/or cumene dioxygenase genes.Biotechnol. Lett. 21, 259–264 (1999).CrossRefGoogle Scholar
  23. Tomita B., Inoue H., Chaya K., Nakamura A., Hamamura N., Ueno K., Watanabe K., Ose Y.: Identification of dimethyl disulfide-forming bacteria isolated from activated sludge.Appl. environ. Microbiol. 53, 1541–1547 (1987).PubMedGoogle Scholar
  24. Vogel T.M., Criddle C.S., McCarty P.L.: Transformations of halogenated aliphatic compounds.Environ. Sci. Technol. 21, 722–736 (1987).CrossRefGoogle Scholar
  25. Wilson J.T., Wilson B.H.: Biotransformation of trichloroethylene in soil.Appl. Environ. Microbiol. 49 242–243 (1985).PubMedGoogle Scholar

Copyright information

© Folia Microbiologica 2001

Authors and Affiliations

  • J. Růžička
    • 1
  • J. Müller
    • 1
  • D. Vít
    • 1
  • V. Hutěčka
    • 1
  • J. Hoffmann
    • 1
  • H. Daťková
    • 2
  • M. Němec
    • 3
  1. 1.Department of Enviromental Technology and ChemistryTomáš Bat′a UniversityZlínCzechia
  2. 2.Institute for Testing and CertificationZlín-LoukyCzechia
  3. 3.Department of MicrobiologyMasaryk UniversityBrnoCzechia

Personalised recommendations