Folia Microbiologica

, Volume 43, Issue 4, pp 431–437 | Cite as

Biocontrol of fungal root rot diseases of crop plants by the use of rhizobia and bradyrhizobia

  • S. A. Omar
  • M. H. Abd-Alla


Twenty-oneRhizobium andBradyrhizobium strains were testedin vitro against the mycelial growth of three pathogenic fungi on solid and liquid media. All tested rhizobia and bradyrhizobia significantly suppressed the growth of the three soil-borne root-infecting fungi (Fusarium solani, Macrophominia phasolina andRhizoctonia solani) either in the absence or presence of iron. This indicates that the siderophore played a minor role in the biocontrol potential ofRhizobium andBradyrhizobium against pathogenic fungi. Pot experiments revealed that the numbers of propagules causing disease after 4 weeks of planting varied with species and host plant. The three most activeRhizobium andBradyrhizobium strains (R. leguminosarum bv.phaseoli TAL 182,B. japonicum TAL 377 andBradyrhizobium sp. (lupin) WPBS 3211 D) tested under greenhouse conditions for their ability to protect one leguminous (soybean) and two non-leguminous (sunflower and okra) seedlings from root rot caused byFusarium solani, Macrophominia phaseolina andRhizoctonia solani provided significant suppression of disease severity compared with nonbacterized control in both leguminous and non-leguminous seedlings.Bradyrhizobium sp. (lupin) WPBS 3211 D provided the lowest degree of resistance against all the tested pathogens with all host plants. *** DIRECT SUPPORT *** A00EN058 00013


Biological Control Pathogenic Fungus Inoculum Density Rose Bengal Hydrogen Cyanide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abd-Alla M.H., Omar S.A.: Herbicides effects on nodulation, growth and nitrogen yield of bean induced by indigenousRhizobium leguminosarum.Zbl. Mikrobiol.148, 593–597 (1993).Google Scholar
  2. Abdalla M.H., Manci S.F.: Interaction between a,Pythium and the herbicide (stomp).Trans. Brit. Mycol. Soc.72, 213–218 (1979).CrossRefGoogle Scholar
  3. Abdel-Mallek A.Y., Hemida S.K., Omar S.A.: Fungal succession and decay of herbicide-treated wheat straw.Folia Microbiol.39, 261–266 (1994a).CrossRefGoogle Scholar
  4. Abdel-Mallek A.Y., Moharram A.M., Abdel-Kader M.I.A., Omar S.A.: Effect of soil treatment with the organophosphorus insecticide profenfos on the fungal flora and some microbial activities.Microbiol. Res.149, 167–171 (1994b).PubMedGoogle Scholar
  5. Carruthers F.L., Shum-Thomas T., Conner A.J., Mahanty H.K.: The significance of antibiotic production byPseudomonas aureofaciens PA 147-2 for biological control ofPhytophthora megasperma root rot of asparagus.Plant & Soil170, 339–344 (1995).CrossRefGoogle Scholar
  6. Cook R.J., Baker K.F.: The nature and practice of biological control of plant pathogens.American Phytopathological Society, St. Paul, Minneapolis 1983.Google Scholar
  7. Ehteshamulhaque S., Ghaffar A.: Use of rhizobia in the control of root rot diseases of sunflower, okra, soybean and mungbean.J. Phytopathol.138, 157–163 (1993).Google Scholar
  8. El-Abyad M.S., Attaby H., Abu-Aisha K.M.: Effect of the herbicide prometryn on metabolic activities of twoFusarium wilt fungi.Trans. Brit. Mycol. Soc.90, 351–358 (1988).Google Scholar
  9. Foster R.C.: The ultrastructure of the rhizoplane and rhizosphere.Ann. Rev. Phytopathol.24, 211–234 (1986).CrossRefGoogle Scholar
  10. Fravel D.R.: Role of antibiosis in the biocontrol of plant diseases.Ann. Rev. Phytopathol.26, 76–91 (1988).Google Scholar
  11. Gutterson N.: Microbial fungicides: recent approaches to elucidating mechanisms.Crit. Rev. Biotechnol.10, 69–91 (1990).CrossRefGoogle Scholar
  12. Hoagland D.R., Arnon D.I.: The water-culture method for growing plants without soil.Circular 347, University of California Agricultural Experimental Station, Berkeley 1938.Google Scholar
  13. Howel C.R., Stipanovic R.D.: Suppression ofPythium ultimum-induced damping-off of cotton seedlings byPseudomonas fluorescens and its antibiotic, pyoluteorin.Phytopathology70, 712–715 (1980).CrossRefGoogle Scholar
  14. Keel C., Wirthner P., Oberhansli T., Voisard C., Burger U., Haas D., Defago G.: Pseudomonads as antagonists of plant pathogens in the rhizosphere: role of the antibiotic 2,4-diacetylphloroglucinol in the suppression of black root rot of tobacco.Symbiosis9, 327–341 (1990).Google Scholar
  15. Keel C., Schnider U., Maurhofer M., Voisard C., Laville J., Burger U., Wirthner P., Haas D., Defago G.: Suppression of root diseases byPseudomonas fluorescens CHAO: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol.Molec. Plant—Microbe Interact.5, 4–13 (1992).Google Scholar
  16. Kloepper J.W., Schroth M.N.: Development of a powder formulation of rhizobacteria for inoculation of potato seed pieces.Phytopathology71, 590–592 (1981).Google Scholar
  17. Kloepper J.W., Scher F.M., Laliberte M., Tipping B.: Emergence-promoting rhizobacteria: description and implications for agriculture, pp. 155–164 inIron. Siderophores and Plant Diseases (T.R. Swinburne, Ed.). Plenum Publishing Corporation, New York 1986.Google Scholar
  18. Kumar B.S.D., Dube H.C.: Seed bacterization with a fluorescentPseudomonas for enhanced plant growth, yield and disease control.Soil Biol. Biochem.24, 539–542 (1992).CrossRefGoogle Scholar
  19. Leong J.: Siderophores: their biochemistry and possible role in biocontrol of plant pathogens.Ann. Rev. Phytopathol.24, 187–209 (1986).CrossRefGoogle Scholar
  20. Loper J.E.: Molecular and biochemical bases for activities of biological control agents: the role of siderophores, pp. 735–747 in R.R. Baker, P.E. Dunn (Eds):New Directions in Biological Control. Alan R. Liss. New York 1990.Google Scholar
  21. Marcedo E.C., Blanco H.G., Chiba S.: Effect of herbicides on growth ofFusarium oxysporum f. vasinfectum.Biologico50, 103–113 (1984).Google Scholar
  22. Reddy M.S., Patrick Z.A.: Colonization of tobacco roots by a fluorescent pseudomonad suppressive to black root rot caused byThielaviopsis basicola.Crop. Protect.11, 148–154 (1992).CrossRefGoogle Scholar
  23. Reddy M.S., Young S.E., Brown G.: Biological control of root-rot and pre-emergence damping-off of white bean with plant growth-promoting rhizobacteria.Phytopathology80, 992 (1990).Google Scholar
  24. Reddy M.S., Hyens R.K., Lazarovits G.: Relationship betweenin vitro growth inhibition of pathogens and suppression of preemergence damping-off and postemergence root rot of white bean seedlings in the greenhouse by bacteria.Can. J. Microbiol.40, 113–119 (1994).CrossRefGoogle Scholar
  25. Schippers B., Bakker A.W., Bakker P.A.H.M.: Interactions of deleterious and benificial microorganisms and the effect of cropping practice.Ann. Rev. Phytopathol.25, 339–358 (1987).CrossRefGoogle Scholar
  26. Sivamani E., Gnanamanickam S.S.: Biological control ofFusarium oxysporum f.sp.cubense in banana by inoculation withPseudomonas fluorescens..Plant & Soil107, 3–9 (1988).CrossRefGoogle Scholar
  27. Somasegaran P., Hoben H.J.: Methods in legume-Rhizobium technology. NIFTAL project and MIRCEN, University of Hawai, Paia 1985.Google Scholar
  28. Voisard C., Keel C., Hass D., Defago G.: Cyanide production byPseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions.EMBO J.8, 351–358 (1989).PubMedGoogle Scholar
  29. Weller D.M.: Biological control of soilborne plant pathogens in the rhizosphere with bacteria.Ann. Rev. Phytopathol.26, 379–407 (1988).CrossRefGoogle Scholar
  30. Weller D.M., Cook R.J.: Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads.Phytopathology73, 463–469 (1983).Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1998

Authors and Affiliations

  • S. A. Omar
    • 1
  • M. H. Abd-Alla
    • 1
  1. 1.Botany Department, Faculty of SciencesAssiut UniversityAssiutEgypt

Personalised recommendations