Advertisement

Folia Microbiologica

, Volume 47, Issue 1, pp 78–80 | Cite as

Formation of iodinin by a strain ofAcidithiobacillus ferrooxidans grown on elemental sulfur

  • P. Češková
  • Z. Žák
  • D. B. Johnson
  • O. Janiczek
  • M. Mandl
Brief Report

Abstract

The presence of the pigment iodinin, anAcidithiobacillus ferrooxidans culture metabolite, was demonstrated after growth of bacteria on elemental sulfur. The structure of iodinin was confirmed by X-ray structure analysis; its physiological role is discussed.

Keywords

Phenazine Elemental Sulfur Acidithiobacillus Ferrooxidans Clofazimine Nocardiopsis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell S.C., Turner J.M.: Iodinin biosynthesis by a pseudomonad.Biochem. Soc. Transact.1, 751–753 (1973).Google Scholar
  2. Christensen P., Cook F.D.:Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio.Internat. J. Syst. Bacteriol.28, 367–393 (1978).CrossRefGoogle Scholar
  3. Clemo G. R., McIlwain H.: The pigment ofChromobacterium iodinum; the phenazine di-N-oxides.J. Chem. Soc. 479–483 (1938).Google Scholar
  4. Crawford P.W., Scamehorn R.G., Hollstein U., Ryan M.D., Kovacic P.: Cyclic voltametry of phenazines and quinoxalines including mono- and di-N-oxides Relation to structure and antimicrobial activity.Chem. Biol. Interact.60, 67–84 (1986).PubMedCrossRefGoogle Scholar
  5. Češková P., Mandl M., Hubáčková J.: Kinetic quantitation of sulfur-oxidizing bacteria adsorbed on sulfur.Biotechnol. Lett.22, 699–701 (2000).CrossRefGoogle Scholar
  6. Gerber N.N., Lechevalier M.P.: Phenazines and phenoxazinones fromWaksmania aerata sp.nov. andPseudomonas iodina.Biochemistry3, 589–602 (1964).CrossRefGoogle Scholar
  7. Hanson A.W., Huml K.: The crystal structure of iodinin.Acta Cryst.B25, 1766–1774 (1968).Google Scholar
  8. Johnson D.B.: Selective solid media for isolating and enumerating acidophilic becteria.J. Microbiol. Meth.23, 205–218 (1995).CrossRefGoogle Scholar
  9. Prauser H., Eckardt K.: Formation of 1,6-dihydroxyphenazine-5, 10-dioxide byStreptosporangium amethystogenes var.nonreducens var. nov.Z. Allg. Mikrobiol.7, 409–410 (1967).PubMedCrossRefGoogle Scholar
  10. Steel H.C., Matlola N.M., Anderson R.: Inhibition of potassium transport and growth of mycobacteria exposed to clofazimine and B669 is associated with a calcium-independent increase in microbial phospholipase A2 activity.J. Antimicrob. Chemother.44, 209–216 (1999).PubMedCrossRefGoogle Scholar
  11. Tsujibo H., Sato T., Inui M. Yamamoto H., Inamori Y.: Intracellular accumulation of phenazine antibiotics produced by an alkalophilic actinomycete—I. Taxonomy, isolation and identification of the phenazine antibiotics.Agric. Biol. Chem.52, 301–306 (1988).Google Scholar
  12. Turner J.M., Messenger A.J.: Occurrence, biochemistry and physiology of phenazine pigment production.Adv. Microb. Physiol.27, 211–275 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2002

Authors and Affiliations

  • P. Češková
    • 1
  • Z. Žák
    • 2
  • D. B. Johnson
    • 3
  • O. Janiczek
    • 1
  • M. Mandl
    • 1
  1. 1.Department of Biochemistry Faculty of ScienceMasaryk UniversityBrnoCzechia
  2. 2.Department of Inorganic Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzechia
  3. 3.School of Biological SciencesUniversity of WalesBangorUK

Personalised recommendations