Advertisement

Folia Microbiologica

, 46:223 | Cite as

Production of polysaccharide hydrolases in the genusRhizopus

  • N. Kolarova
  • J. Augustín
Papers

Abstract

Polysaccharide hydrolase activity was assayed in a group of 28 selectedRhizopus strains. The production of lichenases, mannanases, cellulases, xylanases, amylases and pullulanases was demonstrated using the gel-testing method during growth of the strains on suitably meshed polysaccharide gels.

Keywords

Cellulase Cellulase Activity Aureobasidium Pullulans Amylolytic Enzyme Rhizopus Stolonifer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Augustiín J., Šikl D.: α-Mannosidase of generaAspergillus andRhizopus. Activity and capacity to utilizeSaccharomyces cerevisiae mannan of the best α-mannosidase producerAspergillus flavus Link 69.Folia Microbiol. 23, 349–352 (1978).Google Scholar
  2. Augustiín J., Zemek J., Kocková-Kratochvílová A., Kuniak L'.: Production of α-amylase by yeasts and yeast-like organisms.Folia Microbiol. 23, 353–361 (1978).Google Scholar
  3. Augustín J., Zemek J., Kuniak L'., Kocková-Kratochvílová A.: Mannan-hydrolyzing enzymes of yeasts and yeast-like organisms.Folia Microbiol. 25, 301–305 (1980).Google Scholar
  4. Augustín J., Zemek J., Fassatiová O., Kuniak L'.: Production of α-amylase by microscopic fungi.Folia Microbiol. 26, 142–146 (1981).Google Scholar
  5. Augustín J., Kuniak L'., Páčová Z.: Investigation of the enzymatic equipment of a selected panel of bacterial strains of the genusPseudomonas.Biologia 49, 807–812 (1994).Google Scholar
  6. Augustín J., Kuniak L'., Hudecová D.: Screening of yeasts and yeast-like organismsAureobasidium pullulans for pullulan production.Biologia 52, 399–404 (1997).Google Scholar
  7. Augustín J.: Enzyme equipment inAureobasidium pullulans.Folia Microbiol. 45, 143–146 (2000).Google Scholar
  8. Basri M., Heng A.C., Irazak C.N.A.: Alcoholysis of palm oil mid-fraction by lipase fromRhizopus rhizopodiformis.J. Am. Oil Chem. Soc. 74, 113–116 (1997).CrossRefGoogle Scholar
  9. Davídek J., Hrdlička J., Karvánek M., Pokorný J., Seifert J., Velíšek J.:Laboratory Guide of Food Analysis. (In Czech) SNTL Publishers, Prague 1977.Google Scholar
  10. Fassatiová O.:Moulds and Filamentous Fungi in Technical Microbiology. (in Czech) SNTL Publishers, Prague 1979.Google Scholar
  11. Fujimoto H., Isomura M., Ajisaka K.: Syntheses of alkyl β-d-mannopyranosides and β-1,4 linked oligosaccharides using β-mannosidase fromRhizopus niveus.Biosci. Biotech. Biochem. 61, 164–165 (1997).CrossRefGoogle Scholar
  12. Ginterová A., Janotková O., Zemek J., Augustín J., Kuniak L'.: Cellulase activity of higher fungi.Folia Microbiol. 25, 318–323 (1980).Google Scholar
  13. Ginterová A., Janotková O., Zemek J., Augustín J., Kuniak L'.: Orientation screening of α-amylolytic activity in higher fungi and comparison with the cellulolytic activity.Biologia 36, 23–29 (1981).Google Scholar
  14. Hiromi K., Iwata K., Nishikawa U., Ohnishi M., Tomita T.: Kinetic properties of the amylases,Rhizopus glucoamylases andBacillus α-amylase which are immobilized on cellulofine.Starch 42, 486–489 (1990).CrossRefGoogle Scholar
  15. Inui T., Takeda Y., Iizika H.: Taxonomical studies of genusRhizopus.Rep. Inst. Appl. Microbiol. Univ. Tokyo 11, 1–14 (1966).Google Scholar
  16. James J., Lee B.H.: Glucoamylases microbial sources, industrial application and molecular biology—a review.J. Food Biochem. 21, 1–52 (1997).CrossRefGoogle Scholar
  17. Keil B., Šormová Z. (Eds):Laboratory Techniques in Biochemistry. (in Czech) Publishing House of the Czechoslovak Academy of Sciences, Prague 1959.Google Scholar
  18. Kocková-Kratochvílová A., Sláviková E., Zemek J., Augustín J., Kuniak L'., Dercová K.: Numerical taxonomy of the genusSchwanniomyces klockeri.Biologia 36, 693–701 (1981).Google Scholar
  19. Kunert J., Zemek J., Augustín J., Kuniak L'., Lýsek H.: Polysaccharide-hydrolyzing activity of ovicidal fungi.Biologia 37, 291–299 (1982).Google Scholar
  20. Lukášová J., Zemek J., Augustín J., Kuniak L'.: Production of hydrolases in staphylococci isolated from foodstuffs.Arch. Lebensmittelhyg. 33, 109–136 (1982).Google Scholar
  21. Morita H., Fujio Y.: High specific activity of raw starch digesting glucoamylase producingRhizopus sp. A-11 in liquid culture.Starch 49, 293–296 (1997).CrossRefGoogle Scholar
  22. Murai T., Ueda M., Shibasak Y.: Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface.Appl. Microbiol. Biotechnol. 51, 65–70 (1999).PubMedCrossRefGoogle Scholar
  23. Oote S., Aikawa T., Takahara J., Gijutsian K.: Cellulase ofRhizopus—I. Determination of cellulase activity and the effect of medium composition on the production of cellulase byRhizopus.Hakko Kengyusho Hokoku 26, 65–72 (1964a).Google Scholar
  24. Oote S., Aikawa T., Takahara J., Gijutsian K.: Cellulase ofRhizopus—II. Distribution of cellulase-forming microorganisms inRhizopus genus.Hakko Kengiusho Hokoku 26, 73–79 (1964b).Google Scholar
  25. Panov V.P., Kirsanov A.V., Gregorov V.S., Pankratov A.J.: Morphology and physiologyRhizopus delemar.Microbiology 39, 869–871 (1970).PubMedGoogle Scholar
  26. Saadat S., Kamisango K., Ballou C.E.: Enzymatic degradation of the micobacterialO-methyl-d-glucose polysaccharide by aRhizopus-mold α-amylase, an enzyme active on 6-O-methyl-amylo-oligosaccharides.Carbohydr. Res. 148, 309–319 (1986).PubMedCrossRefGoogle Scholar
  27. Susumu N.: Purification, crystalization and properties of an endo-β-1,3-glucanase fromRhizopus chinensis.Agric. Biol. Chem. 39, 2163–2169 (1975).Google Scholar
  28. Takahasi T., Tsuchida Y., Irie M.: Purification on some properties of three forms of glucoamylase fromRhizopus sp.J. Biochem. 84, 1183–1194 (1978).Google Scholar
  29. Tanaka A., Fukuchi Y., Ohnishi M., Hiromi K., Aibara S., Morita Y.: Fractionation of isoenzymes and determination of subsite structure of glucoamylase fromRhizopus niveus.Agric. Biol. Chem. 47, 573–580 (1983).Google Scholar
  30. Veluz G.A., Katoh T., Morita H., Fujio Y.: Screening of xylanase-producingRhizopus spp.J. Fac. Agricult. Kyushu Univ. 43, 419–423 (1997).Google Scholar
  31. Vincúrová M., Zemek J., Augustín J., Schwartz E., Kuniak L'.: Hydrolases of polysaccharides in typical and atypical mycobacteria.Stud. Pneumol. Phtiseol. Czechosl. 43, 81–85 (1983).Google Scholar
  32. Wells J.M.: Growth of theRhizopus stolonifer in low-oxygen atmosphere and production of pectic and cellulolytic enzymes.Phytopathology 58, 1958–1959 (1968).Google Scholar
  33. Zemek, J., Kuniak L'., Augustín J.: A selection method of microorganisms for polysaccharide-hydrolase production.Czechosl. Pat. Appl. PV-4379 (1978).Google Scholar
  34. Zemek J., Kuniak L'., Borriss R., Kuniak L'., Švábová M., Páčová Z.: Polysaccharide-hydrolyzing enzymes in the genusBacillus.Folia Microbiol. 26, 403–407 (1981a).Google Scholar
  35. Zemek J., Kuniak L'., Augustín J.: Production of polysaccharide enzymes—a new method for selection of producing strains.Abh. Akad. Wiss. DDR Abt. Math. Naturwiss. Tech. 3, 47–53 (1981b).Google Scholar
  36. Zouchová Z., Kocourek J., Musílek V.: α-Mannosidase and mannanase of some wood-roting fungi.Folia Microbiol. 26, 61–65 (1977).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2001

Authors and Affiliations

  1. 1.Institute of ChemistrySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Department of Milk, Fats and Food Hygiene, Faculty of Chemical and Food TechnologySlovak Technical UniversityBratislavaSlovakia

Personalised recommendations