Advertisement

In vitro electrochemical investigations of advanced stainless steels for applications as orthopaedic implants

  • 85 Accesses

  • 29 Citations

Abstract

Potentiodynamic anodic polarization experiments on advanced stainless steels (SS), such as nitrogenbearing type 316L and 317L SS, were carried out in Hank’s solution (8 g NaCl, 0.14 g CaCl2, 0.4 g KC1, 0.35 g NaHCO3, 1 g glucose, 0.1 g NaH2PO4, 0.1 g MgCl2, 0.06 g Na2HPO4 2H2O, 0.06 g MgSO4 7H2O/1000 mL) in order to assess the pitting and crevice corrosion resistance. The results showed a significant improvement in the pitting and crevice corrosion resistance than the commonly used type 316L stainless steel implant material. The corrosion resistance was higher in austenitic stainless steels containing higher amounts of nitrogen. The pit-protection potential for nitrogen-bearing stainless steels was more noble than the corrosion potential indicating the higher repassivation tendency of actively growing pits in these alloys. The accelerated leaching study conducted for the above alloys showed very little tendency for leaching of metal ions, such as iron, chromium, and nickel, at different impressed potentials. This may be due to the enrichment of nitrogen and molybdenum at the passive film and metal interface, which could have impeded the releasing of metal ions through passive film.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 408

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    D.F. Williams,J. Mater. Sci., Vol 22, 1987, p 3421

  2. 2.

    N. Bruneel and J.A. Helsen,J. Biomed. Mater. Res., Vol 22, 1988, p 203

  3. 3.

    L.H. Boulton and A.J. Betts,Br. Corros. J., Vol 26 (No. 4), 1991, p 287

  4. 4.

    Tzyy-Ping Cheng, Wen-Ta Tsai, and Ju-Tung Lee,J. Mater. Sci., Vol 25, 1990, p 936

  5. 5.

    K. Nielsen,Br. Corros. J., Vol 22 (No. 4), 1987, p 272

  6. 6.

    M. Sivakumar and S. Rajeswai,J.Marer.Sci.Lett., Vol 11, 1992, p 1039

  7. 7.

    M. Sivakumar, U. Kamachi Mudali, and S. Rajeswari,J. Mater. Sci., (in press)

  8. 8.

    D.L. Levine,J. Biomed. Mater. Res., Vol 11, 1977, p 553

  9. 9.

    S.G. Steinemann, Corrosion of Surgical Implants—In vivo and In vitro Tests,Evaluation of Biomaterials, G.D. Winter et al., Ed., John Wiley & Sons, 1980, p 1

  10. 10.

    O.E.M. Pohler,Failure Analysis and Prevention, Metals Handbook, Vol 11, American Society for Metals, 9th ed., 1986, p 670

  11. 11.

    J.J. Eckenrod and C.W. Kovach,Properties of Austenitic Stainless Steels and Their Weld Metals (Influence of Slight Chemistry Variations), ASTM STP 679, American Society for Testing and Materials, 1979, p 17

  12. 12.

    J.R. Kearns,J. Mater. Eng., Vol 7, 1985, p 16

  13. 13.

    J.E. Truman,Proceedings of International Conference on High Nitrogen Steels HNS 88, J. Foct and A. Hendry, Ed., The Institute of Metals, Lille, France, 1989, p 225

  14. 14.

    T. Ogawa, S. Aoki, T. Sakamoto, and T. Zaizen,Weld. J., Vol 61, 1982, p 139

  15. 15.

    T.A. Mozhi, K. Nishimoto, B.E. Wilde, and W.A.T. Clark,Corrosion, Vol 42, 1986, p 197

  16. 16.

    K. Merritt and S.A. Brown,J. Biomed. Mater. Res., Vol 22, 1988, p 111

  17. 17.

    H.J. Mueller and E.H. Greener,J. Biomed. Mater. Res., Vol 4, 1970, p 20

  18. 18.

    J.P. Bellier, J. Lacoeur, C. Koehler, and J.P. Davidas,Biomaterials,Vol 11, 1990, p 55

  19. 19.

    R.K. Dayal, N. Parvathavarthini, and J.B. Gnanamoorthy,Br. Corros. J., Vol 18 (No. 4), 1983, p 184

  20. 20.

    Wu Yang, Rul-chng Hua and Hul-zhong Hua,Corros. Sci., Vol 24, 1984, p 691

  21. 21.

    J.E. Truman, M.J. Coleman, and K.R. Pirt,Br. Corros. J., Vol 12, 1977, p 236

  22. 22.

    R.C. Newman, Y.C. Lu, R. Bandy, and C.R. Clayton,Proceedings of the Ninth International Congress on Metallic Corrosion, National Research Council, Toronto, Vol 1, 1984, p 394

  23. 23.

    C.R. Clayton,Passivity Mechanisms in Stainless Steels: Mo-N Synergism, Report No. N00014-85-K-0437, State University of New York at Stony Brook, Stony Brook, New York, 1986

  24. 24.

    U. Kamachi Mudali, R.K. Dayal, T.P.S. Gill, and J.B. Gnanamoorthy,Werkst. Korros., Vol 37, 1986, p 637

  25. 25.

    U. Kamachi Mudali, R.K. Dayal, T.P.S. Gill, and J.B. Gnanamoorthy,Corrosion, Vol 32, 1990, p 454

  26. 26.

    U. Kamachi Mudali, R.K. Dayal, J.B. Gnanamoorthy, and P. Rodriguez, Pitting Corrosion and Passive Film Stability of Nitrogen Bearing Austenitic Stainless Steels, 42nd Annual Technical Meeting of The Indian Institute of Metals, November 14–17, 1988

  27. 27.

    C.R. Clayton and K.G. Martin,Proceedings of the International Conference on High Nitrogen Steels HNS 88, The Institute of Metals, Lille, France, 1988, p 256

  28. 28.

    A.J. Sedriks,Corrosion of Stainless, John Wiley & Sons, 1979, p 63

  29. 29.

    R.C. Newman and T. Shahrabi,Corros. Sci., Vol 27, 8; 1987, p 827

  30. 30.

    P.G. Laing, Biocompatibility of Biomaterials,Orthopaedic Clinics of North America, CM. Evarts, Ed., Vol 4, 1973, p 249

Download references

Author information

Correspondence to M. Sivakumar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sivakumar, M., Mudali, U.K. & Rajeswari, S. In vitro electrochemical investigations of advanced stainless steels for applications as orthopaedic implants. J. of Materi Eng and Perform 3, 744–753 (1994). https://doi.org/10.1007/BF02818375

Download citation

Keywords

  • accelerated leaching
  • crevice corrosion
  • in vitro corrosion
  • nitrogen bearing stainless steels
  • orthopaedic implants
  • pitting corrosion