Lettere al Nuovo Cimento (1971-1985)

, Volume 37, Issue 2, pp 51–54 | Cite as

The fine-structure constant, magnetic monopoles and dirac charge quantization condition

  • T. Datta


The Dirac quantization condition imposes some very peculiar and stringent constraints on the nature of monopoles. One of the most interesting results is that such a particle has a classical radius larger than its quantum (Compton) or « atomic » (Bohr) radius. No other elementary particle shows this property. This indicates that the monopoles are inherently relativistic. Atom like stable bound states of oppositely charged monopoles are unphysical and a pair of primordial monopoles are prone to annihilation, which may explain the so-called monopole paradox. Conversely, if the value of the Sommerfeld fine-structure constant were greater than unity, then « magnetic-monopole atoms » would have been stable and « electric atoms » unstable. It appears that in a physical universe for a given value of the fine-structure constant only one kind of sources or charges (either electric or magnetic) are permissible. This is a quite general requirement imposed by the laws of electrodynamics, quantum mechanics and relativity acting simultaneously in conjunction to each other.


03.65 Quantum theory quantum mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    P. A. M. Dirac:Proc. R. Soc. London, Ser. A,133, 60 (1931);Phys. Rev.,74, 817(1948).ADSCrossRefGoogle Scholar
  2. (3).
    Harish-Chandra:Phys. Rev.,74, 883 (1948).MathSciNetADSCrossRefGoogle Scholar
  3. (4).
    J. Schwinger:Science,165, 757 (1969) and the references therein.ADSCrossRefGoogle Scholar
  4. (5).
    M. K. Saha:Ind. J. Phys.,10, 141 (1936).zbMATHGoogle Scholar
  5. (6).
    P. Langaoker: SLAC preprint 2544 (1980).Google Scholar
  6. (7).
    A. ’thooft:Nucl. Phys. B,79, 276 (1974);A. Polyakov:JETP Lett.,20, 194 (1974).MathSciNetADSCrossRefGoogle Scholar
  7. (8).
    A. O. Barut:Phys. Lett. B,63, 73 (1976).ADSCrossRefGoogle Scholar
  8. (9).
    R. P. Feynman:Quantum Electrodynamics (New York, N.Y.), p. 106.Google Scholar
  9. (10).
    E. Katz:Am. J. Phys.,33 249 (1963).Google Scholar
  10. (11).
    J. P. Preskill:Phys. Rev. Lett.,43, 1365 (1979);R. A. Corrigan Jr.:Nature,288, 348 (1980);S. Mussinov:Phys. Lett. B,110, 221 (1982).ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1983

Authors and Affiliations

  • T. Datta
    • 1
  1. 1.Physics and Astronomy DepartmentUniversity of South CarolinaColumbia

Personalised recommendations