Advertisement

Folia Microbiologica

, Volume 46, Issue 6, pp 559–563 | Cite as

Particulate 1,3-β-d-glucan, carboxymethylglucan and sulfoethylglucan—Influence of their oral or intraperitoneal administration on immunological respondence of mice

  • J. Mucksová
  • K. Babíček
  • M. Pospíšil
Immunology Papers

Abstract

The effect of orally or intraperitoneally administered particulate 1,3-β-d-glucan (PBG), carboxymethylglucan (CMG) or sulfoethylglucan (SEG), obtained from the culture filtrate ofSaccharomyces cerevisiae, on the functions of murine peritoneal adherent cells (PC) (peroxidase activity, nitric oxide synthesis), on relative organ mass and on proliferation of splenocytes was determined. The modulating activities after parenteral and non-parenteral administration of these polysaccharides were compared. Significant enhancement of NO production was observed only afterin vitro cultivation of PC in the presence of lipopolysaccharide (LPS) in groups of mice treated repeatedly orally with CMG, PBG and SEG at a dose of 50 mg/kg body mass. Peroxidase activity increased significantly after repeated oral administration of CMG and PBG at doses 150 and 50 mg/kg, SEG 150 mg/kg body mass. The peroxidase activity and NO synthesis in mice given a single intraperitoneal injection of glucans (15 mg/kg body mass) were slightly higher than those after oral administration. Neither a significant enhancement of relative organ mass nor enhancement of the proliferative response of splenocytes toin vitro added stimuli (LPS, phytohemagglutinin) after repeated oral or single intraperitoneal administration of β-glucans was observed.

Keywords

Glucan Peritoneal Macrophage Nitric Oxide Synthesis Peritoneal Exudate Cell Tularemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al Tuwaijri A.S., Mahmoud A.A., Al Mofleh I.A., Al Khuwaitir S.A.: Effect of glucan onLeishmania major infection in BALB/c mice.J. Med. Microbiol. 23, 363–365 (1987).PubMedCrossRefGoogle Scholar
  2. Bhatty R.S.: Extraction and enrichment (1→3), (1→4)-β-d-glucan from barley and oat brans.Cereal Chem. 70, 73–77 (1993).Google Scholar
  3. Buddle B.M., Pulford H.D., Ralston M.: Protective effect of glucan against experimentally induced staphylococcal mastitis in ewes.Vet. Microbiol. 16, 67–76 (1988).PubMedCrossRefGoogle Scholar
  4. Bukovský M., Vaverková Š., Koštálová D., Magnusová R.: Immunomodulation activity of ethanolic extracts from roots ofEchinacea gloriosa L.,Echinacea angustifolia Dc. andRudbeckia speciosa Wenderoth tested in inbred mice C57BL6. (In Slovak)Českoslov. Farm. 42, 184–187 (1993).Google Scholar
  5. Chihara G.: Immunotherapeutic agents of plant origin.Clin. Immunol. 17, 200–217 (1985).Google Scholar
  6. Doita M., Rasmussen L.T., Seljelid R., Lipski P.E.: Effect of soluble aminated β-1,3-d-polyglucose on human monocytes: stimulation of cytokine and prostaglandin E2 production but not antigen-presenting function.J. Leukoc. Biol. 49, 342–351 (1991).PubMedGoogle Scholar
  7. Giaimis J., Lombard Y., Fonteneau P., Muller C.D., Levy R., Makaya-Kumba M., Lazdins J., Poindron P.: Both mannose and β-glucan receptors are involved in phagocytosis of unopsonized, heat-killedSaccharomyces cerevisiae by murine macrophages.J. Leukoc. Biol. 54, 564–571 (1993).PubMedGoogle Scholar
  8. Kitamura S., Hori T., Kurita K., Takeo K., Hara C., Itoh W., Tabata K., Elgsaeter A., Stokke B.T.: An anti-tumor, branched (1→3)-β-d-glucan from a water extract of fruiting bodies ofCryptoporus volvatus.Carbohydr. Res. 263, 111–121 (1994).PubMedCrossRefGoogle Scholar
  9. Ljungman A.G., Leanderson P., Tagesson C.: (1→3)-β-d-Glucan stimulates nitric-oxide generation and cytokine mRNA expression in macrophages.Environ. Toxicol. Pharmacol. 5, 273–279 (1998).CrossRefGoogle Scholar
  10. Macela A.: Tularemia, the second “book”.Epidemiol. Microbiol. Immunol. 47, 103–120 (1998).Google Scholar
  11. Majumdar S., Gupta R., Dogra N.: Interferon-γ and lipopolysaccharide-induced tumor necrosis factor-α is required for nitric oxide production: tumor necrosis factor-α and nitric oxide are independently involved in the killing ofMycobacterium microti in interferon-γ- and lipopolysaccharide-treated J774A. 1 cells.Folia Microbiol. 45, 457–463 (2000).CrossRefGoogle Scholar
  12. Matsuno R., Aramaki Y., Arima H., Adachi Y., Ohno N., Yadomae T., Tsuchiya S.: Contribution of CR3 to nitric oxide production from macrophages stimulated with high-dose of LPS.Biochem. Biophys. Res. Commun. 244, 115–119 (1998).PubMedCrossRefGoogle Scholar
  13. Ohno N., Hashimoto T., Adachi Y., Yadomae T.: Corrigendum to: Conformation dependency of nitric oxide synthesis of murine peritoneal macrophages by β-glucansin vitro.Immunol. Lett. 53, 157–163 (1996).PubMedCrossRefGoogle Scholar
  14. Sakurai T., Ohno N., Yadomae T.: Effects of fungal β-glucan and interferon-γ on the secretory functions of murine alveolar macrophages.J. Leukoc. Biol. 60, 118–124 (1996).PubMedGoogle Scholar
  15. Suzuki I., Hashimoto K., Ohno N., Tanaka H., Yadomae T.: Immunomodulation by orally administered β-glucan in mice.Internat. J. Immunopharmacol. 11, 761–769 (1989).CrossRefGoogle Scholar
  16. Suzuki I., Hashimoto K., Yadomae T.: Colony stimulating activity of orally-administered β-glucan.Internat. J. Immunopharmacol. 10 (Suppl. 1), 91 (1988).CrossRefGoogle Scholar
  17. Suzuki I., Tanaka H., Kinoshita A., Oikawa S., Osawa M., Yadomae T.: Effect of orally administered β-glucan on macrophage function in mice.Internat. J. Immunopharmacol. 12, 675–684 (1990).CrossRefGoogle Scholar
  18. Sveinbjornsson B., Rushfeldt C., Seljelid R., Smedsrod B.: Inhibition of establishment and growth of mouse liver metastases after treatment with interferon γ- and β-1,3-d-glucan.Hepatology 27, 1241–1248 (1998).PubMedCrossRefGoogle Scholar
  19. Trebichavský I., Zídek Z., Franková D., Zahradníčková M., Šplíchal I.: Nitric oxide metabolites in gnotobiotic piglets orally infected withSalmonella enterica serovar Typhimurium.Folia Microbiol. 46, 353–358 (2001).CrossRefGoogle Scholar
  20. Větvička V., Thornton B.P., Ross G.D.: Soluble β-glucan polysaccharide binding to the lectin site of neutrophil or NK cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells.J. Clin. Invest. 98, 50–61 (1996).PubMedGoogle Scholar

Copyright information

© Folia Microbiologica 2001

Authors and Affiliations

  1. 1.Department of Pathology and Microbiology, BIOPHARMResearch Institute of Biopharmacy and Veterinary DrugsJilové near PragueCzechia
  2. 2.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzechia

Personalised recommendations