Folia Microbiologica

, Volume 43, Issue 6, pp 563–582 | Cite as

Colicins—Exocellular lethal proteins ofEscherichia coli

  • J. Šmarda
  • D. Šmajs


Colicins are toxic exoproteins produced by bacteria of colicinogenic strains ofEscherichia coli and some related species ofEnterobacteriaceae, during the growth of their cultures. They inhibit sensitive bacteria of the same family. About 35%E. coli strains appearing in human intestinal tract are colicinogenic. Synthesis of colicins is coded by genes located on Col plasmids. Until now more than 34 types of colicins have been described, 21 of them in greater detail,viz. colicins A, B, D, E1–E9, Ia, Ib, JS, K, M, N, U, 5, 10. In general, their interaction with sensitive bacteria includes three steps: (1) binding of the colicin molecule to a specific receptor in the bacterial outer membrane; (2) its translocation through the cell envelope; and (3) its lethal interaction with the specific molecular target in the cell. The classification of colicins is based on differences in the molecular events of these three steps.


Outer Membrane Cell Envelope Immunity Protein Sensitive Bacterium Translocation Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott J.D., Graham J.M.: Colicine typing ofShigella sonnei.Month. Bull. Minist. Health Lab. Serv.20, 51–58 (1961).Google Scholar
  2. Abbott J.D., Shannon R.: A new method for typingShigella sonnei using colicin production as a marker.J. Clin. Path.11, 71–77 (1958).PubMedCrossRefGoogle Scholar
  3. Akutsu A., Masaki H., Ohta T.: Molecular structure and immunity specifity of colicin E6, an evolutionary intermediate between E-group colicins and cloacin DF13.J. Bacteriol.171, 6430–6436 (1989).PubMedGoogle Scholar
  4. Baquero F., Bouanchaud D., Martínez M.C., Perrández C.: Microcin plasmids: a group of extrachromosomal elements coding for low molecular weight antibiotics inEscherichia coli.J. Bacteriol.135, 342–347 (1978).PubMedGoogle Scholar
  5. Baquero F., Moreno F.: The microcins.FEMS Microbiol. Lett.23, 117–124 (1984).CrossRefGoogle Scholar
  6. Baty D., Frenette M., Lloubès R., Géli V., Howard S.P., Pattus F., Lazdunski C.: Functional domains of colicin A.Mol. Microbiol.2, 807–811 (1988).PubMedCrossRefGoogle Scholar
  7. Baty D., Lloubès R., Géli V., Lazdunski C., Howard S.P.: Extracellular release of colicin A is non-specific.EMBO J.6, 2463–2468 (1987).PubMedGoogle Scholar
  8. Bénédetti H., Lloubès R., Lazdunski C., Lettelier L.: Colicin A unfolds during its translocation inEscherichia coli cells and spans the whole cell envelope when its pore has formed.EMBO J.11, 441–447 (1992).PubMedGoogle Scholar
  9. Ben-Gurion R., Hertman I.: Bacteriocin-like material produced byPasteurella pèstis.J. Gen. Microbiol.19, 289–294 (1958).PubMedGoogle Scholar
  10. Bourdineaud J.P., Boulanger P., Lazdunski C., Letellier L.:In vivo properties of colicin A: channel activity is voltage dependent but translocation may be voltage independent.Proc. Nat. Acad. Sci. USA87, 1037–1041 (1990).PubMedCrossRefGoogle Scholar
  11. Bouveret E., Derouiche R., Rigal A., Lloubès R., Lazdunski C., Bénédetti H.: Peptidoglycan-associated lipoprotein-TolB interaction.J. Biol. Chem.270, 11071–11077 (1995).PubMedCrossRefGoogle Scholar
  12. Bradley D.E.: Colicins G and H and their host strains.Can. J. Microbiol.37, 751–757 (1991).PubMedGoogle Scholar
  13. Bradley D.E., Howard S.P.: A new colicin that adsorbs to the outer membrane protein Tsx but is dependent on thetonB instead of thetolQ membrane transport system.J. Gen. Microbiol.138, 2721–2724 (1992).PubMedGoogle Scholar
  14. Brandis H., Šmarda J.:Bacteriocine und bacteriocinähnliche Substanzen. Gustav Fischer Verlag, Jena 1971.Google Scholar
  15. Braun V.: Covalent lipoprotein from the outer membrane ofEscherichia coli.Biochim. Biophys. Acta415, 335–377 (1975).PubMedGoogle Scholar
  16. Braun V.: Energy-coupled transport and signal transduction through the gram-negative outer membranevia the TonB-ExbB-ExbD dependent receptor proteins.FEMS Microbiol. Rev.16, 295–307 (1995).PubMedCrossRefGoogle Scholar
  17. Braun V., Günter K., Hantke K.: Transport of iron across the outer membrane.Biol. Met.4, 14–22 (1991).PubMedCrossRefGoogle Scholar
  18. Braun V., Pilsl H., Gross P.: Colicins: structures, modes of action, transfer through membranes, and evolution.Arch. Microbiol.161, 199–206 (1994).PubMedCrossRefGoogle Scholar
  19. Cavard D., Lazdunski C.: Colicin cleavage by OmpT protease during both entry into and release fromEscherichia coli cells.J. Bacteriol.172, 648–652 (1990).PubMedGoogle Scholar
  20. Cavard D., Lloubès R., Morlon J., Chartier M., Lazdunski C.: Lysis protein encoded by plasmid ColA-CA31. Gene sequence and export.Mol. Gen. Genet.199, 95–100 (1985).PubMedCrossRefGoogle Scholar
  21. Chak K.F., Kuo W.S., Lu F.M., James R.: Cloning and characterization of the ColE7 plasmid.J. Gen. Microbiol.137, 91–100 (1991).PubMedGoogle Scholar
  22. Chak K.F., Safo M.K., Ku W.Y., Hsieh S.Y., Yuan H.S.: The crystal structure of the immunity protein of colicin E7 suggests a possible colicin-interacting surface.Proc. Nat. Acad. Sci. USA93, 6437–6442 (1996).PubMedCrossRefGoogle Scholar
  23. Chan P.T., Ohmori H., Tomizawa J., Lebowitz J.: Nucleotide sequence and gene organization of ColE1 DNA.J. Biol. Chem.260, 8925–8935 (1985).PubMedGoogle Scholar
  24. Clowes R.C.: Colicin factors and episomes.Genet. Res. Cambr.4, 162–165 (1963).Google Scholar
  25. Clowes R.C.: Transmission and elimination of colicin factors and some aspects of immunity to colicin E1 inEscherichia coli.Zbl. Bakt. Hyg. A I Orig.196, 152–160 (1965).Google Scholar
  26. Cole S.T., Saint-Joanis B., Pugsley A.P.: Molecular characterization of the colicin E2 operon and identification of its proteins.Mol Gen. Genet.198, 465–472 (1985).PubMedCrossRefGoogle Scholar
  27. Cooper P.C., James R.: Two new E colicins, E8 and E9, produced by a strain ofEscherichia coli.J. Gen. Microbiol.130, 209–215 (1984).PubMedGoogle Scholar
  28. Davies J.K., Reeves P.: Genetics of resistance to colicins inEscherichia coli K-12: cross-resistance among colicins of group B.J. Bacteriol.123, 96–101 (1975a).PubMedGoogle Scholar
  29. Davies J.K., Reeves P.: Genetics of resistance to colicins inEscherichia coli K-12: cross-resistance among colinins of group A.J. Bacteriol.123, 102–117 (1975b).PubMedGoogle Scholar
  30. Di Masi D.R., White J.S., Schnaitman C.A., Bradbeer C.: Transport of vitamin B12 inEscherichia coli: common receptor sites for vitamin B12 and E colicins on outer membrane of the cell envelope.J. Bacteriol.115, 506–513 (1973).PubMedGoogle Scholar
  31. Drury L.S., Buxton R.S.: Identification and sequencing of theEscherichia coli cet gene which codes for an inner membrane protein, mutation of which causes tolerance to colicin E2.Mol. Microbiol.2, 109–119 (1988).PubMedCrossRefGoogle Scholar
  32. Duché D., Izard J., Gonzáles-Mañas J.M., Parker M.W., Crest M., Chartier M., Baty D.: Membrane topology of the colicin A pore-forming domain analyzed by disulfide bond engineering.J. Biol. Chem.271, 15401–15406 (1996).PubMedCrossRefGoogle Scholar
  33. Duché D., Letellier L., Géli V., Bénédetti H., Baty D.: Quantification of group A colicin import sites.J. Bacteriol.177, 4935–4939 (1995).PubMedGoogle Scholar
  34. El Kouhen R., Hoenger A., Engel A., Pages J.:In vitro approaches to investigation of the early steps of colicin-OmpF interaction.Eur. J. Biochem224, 723–728 (1994).PubMedCrossRefGoogle Scholar
  35. van den Elzen P.J.M., Walters H.H.B., Veltkamp E., Nukamp H.J.: Molecular structure and function of the bacteriocin gene and bacteriocin protein of plasmid cloDF13.Nucl. Acids. Res.11, 2465–2477 (1983).PubMedCrossRefGoogle Scholar
  36. Eraso J.M., Chidambaram M., Weinstock G.M.: Increased production of colicin E1 in stationary phase.J. Bacteriol.178, 1928–1935 (1996).PubMedGoogle Scholar
  37. Eraso J.M., Weinstock G.M.: Anaerobic control of colicin E1 production.J. Bacteriol.174, 5101–5109 (1992).PubMedGoogle Scholar
  38. Espesset D., Duché D., Baty D., Géli V.: The channel domain of colicin A is inhibited by its immunity protein through direct interaction in theEscherichia coli inner membrane.EMBO J.15, 2356–2364 (1996).PubMedGoogle Scholar
  39. Evans L.J.A., Cooper A., Lakey J.H.: Direct measurement of the association of a protein with a family of membrane receptors.J. Mol. Biol.255, 559–563 (1996).PubMedCrossRefGoogle Scholar
  40. Ferber D.M., Brubaker R.R.: Mode of action of pesticin: N-acetylglucosaminidase activity.J. Bacteriol.139, 495–501 (1979).PubMedGoogle Scholar
  41. Ferber D.M., Fowler J.M., Brubaker R.R.: Mutations to tolerance and resistance to pesticin and colicins inEscherichia coli.J. Bacteriol.146, 506–511 (1981).PubMedGoogle Scholar
  42. Foulds J., Shemin D.: Properties and characteristics of a bacteriocin fromSerratia marcescens.J. Bacteriol.99, 655–660 (1969).PubMedGoogle Scholar
  43. Fredericq P.: Sur la pluralité des récepteurs d'antibiose d'E. coli.Compt. Rend. Soc. Biol.140, 1189–1190 (1946).Google Scholar
  44. Fredericq P.: Actions antibiotiques réciproques chez lesEnterobacteriaceae.Rev. belge Path. exp. Med. exp.19, suppl. 4, 1–107 (1948).Google Scholar
  45. Fredericq P.: Acquisition de proprietes antibiotiques nouvelles par la soucheE. coli V sous l'action des bacteriophages T.1, T.5 et T.7.Antonie van Leeuwenhoek J. Microbiol. Serol.17, 102–106 (1951).CrossRefGoogle Scholar
  46. Fredericq P.: A note on the classifications of colicins.Zbl. Bakt. Hyg. A I Orig.196, 140–142 (1965).Google Scholar
  47. Fredericq P., Betz-Bareau M.: Transfert génétique de la propriété colicinogène chezE. coli.Compt. Rend. Soc. Biol.147, 1110–1112 (1953).Google Scholar
  48. Fredericq P., Joiris E., Betz-Bareau M., Gratia A.: Recherche des germes producteurs de colicines dans les selles de malades atteints de fièvre paratyphoide B.Compt. Rend. Soc. Biol.143, 556–559 (1949).Google Scholar
  49. Fredericq P., Šmarda J.: Complexite du facteur colicinogène B.Ann. Inst. Pasteur118, 767–774 (1970).Google Scholar
  50. Gardner J.F.: Some antibiotics formed byBacterium coli.Brit. J. exp. Path.31, 102–111 (1950).PubMedGoogle Scholar
  51. Géli V., Lazdunski C.: An α-helical hydrophobic hairpin as a specific determinant in protein-protein interaction occurring inEscherichia coli colicin A and B immunity systems.J. Bacteriol.174, 6432–6437 (1992).PubMedGoogle Scholar
  52. Gratia A.: Sur un remarquable exemple d'anatagonisme entre deux souches de colibacille.Comp. Rend. Soc. Biol.93, 1040–1041 (1925).Google Scholar
  53. Gratia A.: Antagonisme bactérien et bactériophagie.Ann. Inst. Pasteur48, 113–137 (1932).Google Scholar
  54. Gratia A., Fredericq P.: Diversité des souches antibiotiques deB. coli et étendue variable de leurs champs d'action.Comp. Rend. Soc. Biol.140, 1032–1033 (1946).Google Scholar
  55. Gross P., Braun V.: Colicin M is inactivated during import by its immunity protein.Mol. Gen. Genet.251, 388–396 (1996).PubMedGoogle Scholar
  56. Guasch J.F., Enfedaque E., Ferrer S., Gargallo D., Regué M.: Bacteriocin 28b, a chromosomally encoded bacteriocin produced by mostSerratia marcescens biotypes.Res. Microbiol.146, 447–483 (1995).CrossRefGoogle Scholar
  57. Guihard G., Boulanger P., Bénédetti H., Lloubès R., Besnard M., Lettelier L.: Colicin A and the Tol proteins involved in its translocation are preferentially located in the contact sites between the inner and outer membranes ofEscherichia coli cells.J. Biol. Chem.269, 5874–5880 (1994).PubMedGoogle Scholar
  58. Hamon Y., Péron Y.: A propos de quelques nouveaux types de colicines thermostables.Compt. Rend. Acad. Sci.258, 3121–3124 (1964a).Google Scholar
  59. Hamon Y., Péron Y.: Description de sept nouveaux types de colicines. État actuel de la classification de ces antibiotiques.Ann. Inst. Pasteur106, 44–54 (1964b).Google Scholar
  60. Hantke K., Braun V.: Membrane receptor dependent iron transport inEscherichia coli.FEBS Lett.49, 301–305 (1975).PubMedCrossRefGoogle Scholar
  61. Hauduroy P., Papavassiliou J.: Identification of a new type of colicine (colicine L).Nature195, 730–732 (1962).PubMedCrossRefGoogle Scholar
  62. Hejátko J., Šmarda J.: Temporary desorption of colicin during the process of its adsorption on sensitive bacteria.Scripta med. (Brmo), in press (1998).Google Scholar
  63. Hill C., Holland I.B.: Genetic basis of colicin E susceptibility inEscherichia coli. I. Isolation and properties of refractory mutants and the preliminary mapping of their mutations.J. Bacteriol.94, 677–686 (1967).PubMedGoogle Scholar
  64. Hirose A., Kumagai J., Ihamori K.: Dissociation and reconstitution of colicin E3 and immunity substance complex.J. Biochem. (Tokyo)79, 305–311 (1976).Google Scholar
  65. Horák V.: Two new colicins fromShigellae.Fol. Microbiol.35, 469–470 (1990).Google Scholar
  66. Horák V.: Seventy colicin types ofShigella sonnei and an indicator system for their determination.Zbl. Bakt. Hyg. A I Orig.281, 24–29 (1994).Google Scholar
  67. Horák V., Sobotková J.: Sensitivity to colicin JS, one of important characteristics ofEscherichia coli strains belonging to enteroinvasive serovars.Zbl. Bakt. Hyg. A I Orig.269, 156–159 (1988).Google Scholar
  68. Jacob F., Siminovitch L., Wollman É.: Sur la biosynthèse d'une colicine et sur son mode d'action.Ann. Inst. Pasteur83, 295–315 (1952).Google Scholar
  69. Jakes K.S., Davis N.G., Zinder N.D.: A hybrid toxin from bacteriophage f1 attachment protein and colicin E3 has altered cell receptor specifity.J. Bacteriol.170, 4231–4238 (1988).PubMedGoogle Scholar
  70. Jakes K.S., Zinder N.: Highly purified colicin E3 contains immunity protein.Proc. Nat. Acad. Sci. USA71, 3380–3384 (1974).PubMedCrossRefGoogle Scholar
  71. James R., Jarvis M., Barker D.F.: Nucleotide sequence of the immunity and lysis region of the ColE9-J plasmid.J. Gen. Microbiol.133, 1553–1562 (1987).PubMedGoogle Scholar
  72. James R., Kleanthous C., Moore G.R.: The biology of E-colicins: paradigms and paradoxes.Microbiol.142, 1569–1580 (1996).Google Scholar
  73. Jeanteur D., Schirmer T., Fourel D., Simonet V., Rummel G., Widmer C., Rosenbusch J.P., Pattus F., Pages J.: Structural and functional altertions of a colicin-resistant mutant of OmpF-porin fromEscherichia coli Proc. Nat. Acad. Sci. USA91, 10675–10679 (1994).PubMedCrossRefGoogle Scholar
  74. Kadner R.J.: Vitamin B12 transport inEscherichia coli: energy coupling between membranes.Mol. Microbiol.4, 2027–2033 (1990).PubMedCrossRefGoogle Scholar
  75. Kadner R.J., Bassford P.J. Jr.,Pugsley A.P.: Colicin receptors and mechanisms of colicin uptake.Zbl. Bakt. Hyg. A I Orig.244 90–104 (1979).Google Scholar
  76. Kageyama M., Kobayashi M., Sano Y., Masaki H.: Construction and characterization of pyocin-colicin chimeric proteins.J. Bacteriol.178, 103–110 (1996).PubMedGoogle Scholar
  77. Konisky J.: The Bacteriocins, pp. 71–136 inThe Bacteria: a Treatise on Structure and Function, Vol. 6Bacterial Diversity (L.N. Ornston, J.R. Sokatch, Eds.) Academic Press, New York 1978.Google Scholar
  78. Konisky J., Nomura M.: Interaction of colicins with bacterial cells. II. Specific alteration ofEscherichia coli ribosomes induced by colicin E3in vivo.J. Mol. Biol.26, 181–195 (1967).PubMedCrossRefGoogle Scholar
  79. Konisky J., Richards F.M.: Characterization of colicin Ia and Ib. Purification and some physical properties.J. Biol. Chem.245, 2972–2978 (1970).PubMedGoogle Scholar
  80. Lasater L.S., Cann P.A., Glitz D.G.: Localization of the site of cleavage of ribosomal RNA by colicin E3. Placement of the small ribosomal subunit by electron microscopy of antibody-complementary oligodeoxynucleotide complexes.J. Biol. Chem.264, 21798–21805 (1989).PubMedGoogle Scholar
  81. Lau P.C.K., Condie J.A.: Nucleotide sequences from the colicins E6 and E9 operons: presence of a degenerate transposon-like structure in the ColE9-J plasmid.Mol. Gen. Genet.217, 269–277 (1989).PubMedCrossRefGoogle Scholar
  82. Lazdunski C.: Colicin import and pore-formation: a system for studying protein transport across membranes?Mol. Microbiol.16, 1059–1066 (1995).PubMedCrossRefGoogle Scholar
  83. Lazdunski C., Baty D., Géli V., Cavard D., Morlon J., Lloubès J., Howard S.P., Knibiehler M., Chartier M., Varenne S., Frenette M., Dasseux J.L. Pattus F.: The membrane channel-forming colicin A: synthesis, secretion, structure, action and immunity.Biochim. Biophys. Acta947, 4445–4464 (1988).Google Scholar
  84. Lazzaroni J.C., Vianney A., Popot J.L., Bénédetti H., Samatey F., Lazdunski C., Portalier R., Géli V.: Transmembrane α-helix interactions are required for the functional assembly of theEscherichia coli Tol complex.J. Mol. Biol.246, 1–7 (1995).PubMedCrossRefGoogle Scholar
  85. Lokaj J., Šmarda J., Mach J.: Colicin E3 enhances the oxidoreductive activity of guinea-pig leukocytes.Experientia38, 1352–1353 (1982).CrossRefGoogle Scholar
  86. Lotz W.: Effect of guanosine tetraphosphate onin vitro protein synthesis directed by E1 and E3 colicinogenic factors.J. Bacteriol.135, 707–712 (1978).PubMedGoogle Scholar
  87. Lu F.M., Chak K.F.: Two overlapping SOS boxes in ColE1 operon are responsible for the viability of cells harboring the Col plasmid.Mol. Gen. Genet.251, 407–411 (1996).PubMedCrossRefGoogle Scholar
  88. Luirink J., Mol O., Oudega B.: Functioning of the pColDF13 encoded BRP, pp. 307–316 inBacteriocins, Microcins and Lantibiotics (R. James, C. Lazdunski, F. Pattus, Eds). Springer-Verlag, Berlin-Heidelberg-New York 1992.Google Scholar
  89. Males B.M., Stocker B.A.D.:Escherichia coli K317, formerly used to define colicin group E2, produces colicin E7, is immune to colicin E2, and carries a bacteriophage-restricting conjugative plasmid.J. Bacteriol.144, 524–531 (1980).PubMedGoogle Scholar
  90. Males B.M., Stocker B.A.D.: Colicin E4, colicin E5, colicin E6 and colicin A and properties ofbtub+ colicinogenic transconjugants.J. Gen. Microbiol.128, 95–106 (1982).PubMedGoogle Scholar
  91. Mathildah M.T., Timmis K.N., Diaz E.: Use of colicin E3 for biological containment of microorganisms.Appl. Environ. Microbiol.62, 1805–1807 (1996).Google Scholar
  92. Matsuzawa H., Ushiyama S., Koyama Y., Ohta T.:Escherichia coli K-12tolZ mutants tolerant to colicins E2, E3, D, Ia and Ib: defect in generation of the electrochemical proton gradient.J. Bacteriol.160, 733–739 (1984).PubMedGoogle Scholar
  93. Mock M., Pugsley A.P.: The BtuB group Col plasmids and homology between the colicins they encode.J. Bacteriol.150, 1069–1076 (1982).PubMedGoogle Scholar
  94. Morlon J., Lloubès R., Varenne S., Chartier M., Lazdunski C.: Complex nucleotide sequence of the structural gene for the colicin A, a gene translated at a non-uniform rate.J. Mol. Biol.170, 271–285 (1983).PubMedCrossRefGoogle Scholar
  95. Nagel de Zwaig R., Luria S.E.: Genetics and physiology of colicin-tolerant mutants ofEscherichia coli.J. Bacteriol.94, 1112–1123 (1967).PubMedGoogle Scholar
  96. Nomura M.: Mode of action of colicins.Cold Spring Harbor Symp. Quant. Biol.28, 315–324 (1963).Google Scholar
  97. Nomura M.: Mechanism of action of colicines.Proc. Nat. Acad. Sci. USA52, 1514–1521 (1964).PubMedCrossRefGoogle Scholar
  98. Nomura M., Nakamura M.: Reversibility of inhibition of nucleic acids and protein synthesis by colicin K.Biochem. Biophys. Res. Comm.7, 306–309 (1962).PubMedCrossRefGoogle Scholar
  99. Nomura M., Witten C.: Interaction of colicins with bacterial cells. III. Colicin-tolerant mutations inEscherichia coli.J. Bacteriol.94, 1093–1111 (1967).PubMedGoogle Scholar
  100. Ölschläger T., Braun V.: Sequence, expression and localization of the immunity protein for colicin M.J. Bacteriol.169, 4765–4769 (1987).PubMedGoogle Scholar
  101. Ölschläger T., Turba A., Braun V.: Binding of the immunity protein inactivates colicin M.Mol. Microbiol.5, 1105–1111 (1991).PubMedCrossRefGoogle Scholar
  102. Papavassiliou J.: Biological characteristics of colicine X.Nature160, 110 (1961).CrossRefGoogle Scholar
  103. Parker M.W., Pattus F., Tucker A.D., Tsernoglou D.: Structure of the membrane-pore-forming fragment of colicin A.Nature337, 93–96 (1989).PubMedCrossRefGoogle Scholar
  104. Pattus F., Massote D., Wilmsen H.U., Lakey J., Tsernoglou D., Tucker A., Parker M.W.: Colicins: prokaryotic killer pores.Experientia46, 181–191 (1990).Google Scholar
  105. Pilsl H., Braun V.: Novel colicin 10: assignment of four domains to TonB- and TolC-dependent uptakevia the Tsx receptor and to pore formation.Mol. Microbiol.16, 57–67 (1995a).PubMedCrossRefGoogle Scholar
  106. Pilsl H., Braun V.: Evidence that the immunity protein inactivates colicin 5 immediately prior formation of the transmembrane channel.J. Bacteriol.177, 6966–6972 (1995b).PubMedGoogle Scholar
  107. Pilsl H., Braun V.: Strong function-related homology between the pore-forming colicins K and 5.J. Bacteriol.177, 6973–6977 (1995c).PubMedGoogle Scholar
  108. Pilsl H., Killmann H., Hantke K., Braun V.: Periplasmic location of the pesticin immunity protein suggest inactivation of pesticin in the periplasm.J. Bacteriol.178, 2431–2435 (1996).PubMedGoogle Scholar
  109. Pugsley A.P.: The ins and outs of colicins. I. Production, and translocation across membranes.Microbiol. Sci.1, 168–175 (1984a).PubMedGoogle Scholar
  110. Pugsley A.P.: The ins and outs of colicins. II. Lethal action, immunity and ecological implications.Microbiol. Sci.1, 203–205 (1984b).PubMedGoogle Scholar
  111. Pugsley A.P.: Nucleotide sequencing of the structural gene for colicin N reveals homology between the catalytic C-terminal domains of colicin A and colicin N.Mol. Microbiol.1, 317–325 (1987).PubMedCrossRefGoogle Scholar
  112. Pugsley A.P.: The immunity and lysis genes of ColN plasmid pCHAP4.Mol. Gen. Genet.211, 335–341 (1988).PubMedCrossRefGoogle Scholar
  113. Pugsley A.P., Schwartz M.: A genetic approach to the study of mitomycin-induced lysis ofEscherichia coli K-12 strains which produce colicin E2.Mol. Gen. Genet.190, 366–372 (1983).PubMedCrossRefGoogle Scholar
  114. Pugsley A.P., Schwartz M.: Colicin E2 release: lysis, leakage or secretion? Possible role of a phospholipase.EMBO J.3, 2393–2397 (1984).PubMedGoogle Scholar
  115. Qui X.Q., Jakes K.S., Kienker P.K., Finkelstein A., Slatin S.L.: Major transmembrane movement associated with colicin Ia channel gating.J. Gen. Physiol.107, 313–328 (1996).CrossRefGoogle Scholar
  116. Reeves P.: The bacteriocins.Bacteriol. Rev.29, 24–45 (1965).PubMedGoogle Scholar
  117. Reeves P.:The Bacteriocins. Springer-Verlag, Berlin-Heidelberg-New York 1972.Google Scholar
  118. Roos U., Harkness R.E., Braun V.: Assembly of colicin genes from a few DNA fragments. Nucleotide sequence of colicin D.Mol. Microbiol.3, 891–902 (1989).PubMedCrossRefGoogle Scholar
  119. Sagik J.F., Suit J.L., Luria S.E.:cea-kil operon of the ColE1 plasmid.J. Bacteriol.153, 1479–1485 (1983).Google Scholar
  120. Salles B., Weisemann J.M., Weinstock G.M.: Temporal control of colicin E1 induction.J. Bacteriol.169, 5028–5034 (1987).PubMedGoogle Scholar
  121. San Millán J.L., Kolter R., Moreno F.: Evidence that colicin X is microcin B17.J. Bacteriol.169, 2899–2901 (1987).PubMedGoogle Scholar
  122. Schaller K., Holtje J.-V., Braun V.: Colicin M is an inhibitor of murein synthesis.J. Bacteriol.152, 994–1000 (1982).PubMedGoogle Scholar
  123. Schaller K., Krauel A., Braun V.: Temperature sensitive, colicin M-tolerant mutant ofEscherichia coli.J. Bacteriol.147, 135–139 (1981).PubMedGoogle Scholar
  124. Schramm E., Mende J., Braun V., Kamp R.M.: Nucleotide sequence of colicin B activity genecba: consensus peptapeptide among TonB-dependent colicins and receptors.J. Bacteriol.169, 3350–3357 (1987).PubMedGoogle Scholar
  125. Šmajs D.: The morphology of bacterial cell in inhibition zones produced by colicins.Scripta med. (Brno)68, 171–180 (1995).Google Scholar
  126. Šmajs D., Pisl, H., Braun V.: Colicin U, a novel colicin produced byShigella boydii.J. Bacteriol.179, 4919–4928 (1997).PubMedGoogle Scholar
  127. Šmarda J.: Incidence and manifestations of colicinogeny in strains ofEscherichia coli.J. Hyg. Epid. Microbiol. Immunol.4, 151–165 (1960).Google Scholar
  128. Šmarda J.: Some problems of the immediate action of colicines on susceptible bacteria.Antimicrob. Agents Chemother. 345–348 (1965).Google Scholar
  129. Šmarda J.: Novel approaches to the mode of action of colicins.Fol. Microbiol.20, 264–271 (1975).Google Scholar
  130. Šmarda J.: The action of colicins on eukaryotic cells.J. Toxicol. Toxin Rev.2, 1–76 (1983).Google Scholar
  131. Šmarda J.: Production of bacteriocin-like agents ofBudvicia aquatica and “Pragia fontium”.Zbl. Bakt. Hyg. A I Orig.265, 74–81 (1987).Google Scholar
  132. Šmarda J.: Resistance and tolerance of bacteria to E colicins, pp. 493–502 inBacteriocins, Microcins and Lantibiotics (R. James, C. Lazdunski, F. Pattus, Eds). Springer-Verlag, Berlin-Heidelberg-New York 1992a.Google Scholar
  133. Šmarda J.: Colicins as anti-tumour drugs, pp. 505–510 inBacteriocins, Microcins and Lantibiotics (R. James, C. Lazdunski, F. Pattus, Eds). Springer-Verlag, Berlin-Heidelberg-New York 1992b.Google Scholar
  134. Šmarda J., Damborský J.: A quantitative assay of E group colicins.Scripta med. (Brno)64, 111–118 (1991).Google Scholar
  135. Šmarda J., Obdržálek V.: Colicine Q.Zbl. Bakt. Hyg. A I Orig.200, 493–497 (1966).Google Scholar
  136. Šmarda J., Obdržálek V.: The lethal effect of colicin E3 on HeLa cells in tissue cultures.IRCS J. Med. Sci.5, 524 (1977).Google Scholar
  137. Šmarda J., Obdržálek V., Táborský I., Mach J.: The cytotoxic effect of colicin E3 on mammalian tissue cells.Fol. Microbiol.23, 272–277 (1978).Google Scholar
  138. Šmarda J., Oravec C.:In vitro andin vivo inhibition of blast lymphocytes by colicins.Fol. Microbiol.38, 120 (1993).Google Scholar
  139. Šmarda J., Petrželová J., Vyskot B.: Colicin JS ofShigella sonneii: classification of type colicin “7”.Zbl. Bakt. Hyg. A I Orig.263, 530–540 (1987).Google Scholar
  140. Šmarda J., Schuhmann E.: Studies of colicin action on wall-less stable L-forms ofEscherichia coli. I. Degree of attachment and of killing effect on rods and stable L-form cells.Z. Allg. Mikrobiol.19, 511–516 (1979).PubMedCrossRefGoogle Scholar
  141. Šmarda J., Ševčíková I.: Mutation analysis of the receptor for colicins E1–E7. A pilot study.Fol. Microbiol.33, 59–67 (1988).CrossRefGoogle Scholar
  142. Šmarda J., Šmarda J., Jr.,Vrbická Z.: Colicins E7 and E8 degrade DNA in sensitive bacteria.Fol. Microbiol.35, 348–352 (1990).Google Scholar
  143. Šmarda J., Taubeneck U.: Situation of colicin receptors in surface layers of bacterial cells.J. Gen. Microbiol.52, 161–172 (1968).Google Scholar
  144. Song H.Y., Cramer W.A.: Membrane topography of ColE1 gene products: the immunity protein.J. Bacteriol.173, 2935–2943 (1991).PubMedGoogle Scholar
  145. Sonnenborn U., Greinwald R.:Beziehungen zwischen Wirtorganismus und Darmflora. Schattauer, Stuttgart-New York 1991.Google Scholar
  146. Stegehius F., van der Wal F.J., Luirink J., Oudega B.: Expression of the pColDF13 encoded bacteriocin release protein or its stable signal peptide causes early effects on protein biosynthesis and Mg2+ transport.Antonie van Leeuwenhoek J. Microbiol. Serol.67, 255–260 (1995).CrossRefGoogle Scholar
  147. Stouthamer A.H., Tietze G.A.: Bacteriocin production by members of the genusKlebsiella.Antonie van Leeuwenhoek J. Microbiol. Serol.32, 171–182 (1966).CrossRefGoogle Scholar
  148. Suzuki H.: Colicin E3 inhibits rabbit globin synthesis.FEBS Lett.89, 121–125 (1978).PubMedCrossRefGoogle Scholar
  149. Tatsumi Y., Maejima T., Mitsuhashi S.: Mechanism oftonB-dependent transport of KP736, a 1,5-dihydroxy-4-pyridone-substituted cephalosporin, intoEscherichia coli K-12 cells.Antimicrob. Agents. Chemother.39, 613–619 (1995).PubMedGoogle Scholar
  150. Threlfall E.J., Holland I.B.: Co-transduction with SerB of a pleiotropic mutation affecting colicin E2 refractivity, ultraviolet sensitivity, recombination proficiency and surface properties ofEscherichia coli K12.J. Gen. Microbiol.62, 383–398 (1970).PubMedGoogle Scholar
  151. Toba M., Masaki H., Ohta T.: Colicin E8, a DNase which indicates an evolutionary relationship between colicins E2 and E3.J. Bacteriol.170, 3237–3242 (1988).PubMedGoogle Scholar
  152. Uratani Y., Cramer W.A.: Reconstitution of colicin E1 into dimyristoylphosphatidylcholine membrane vesicles.J. Biol. Chem.256, 4017–4023 (1981).PubMedGoogle Scholar
  153. Viejo M.B., Enfedaque J., Guasch J.F., Ferrer S., Regué M.: Protection against bacteriocin 28b inSerratia marcescens is apparently not related to the expression of an immunity gene.Can. J. Microbiol.41, 217–226 (1995).PubMedCrossRefGoogle Scholar
  154. Viejo M.B., Gargallo D., Ferrer S., Enfedaque J., Regué M.: Cloning and DNA sequence analysis of a bacteriocin gene fromSerratia marcescens.J. Gen. Microbiol.138, 1737–1743 (1992).PubMedGoogle Scholar
  155. Viklický V., Šmarda J., Dráber Petr, Pokorná Z., Mach J., Dráber Pavel: The cytoplasmic membrane as a site of the primary effect of colicin on eucaryotic cells.Folia Biol. (Prague)25, 116–125 (1979).Google Scholar
  156. van der Wal F.J., ten Hagen C.N., Oudega B., Luirink J.: Application of the pColDF13 bacteriocin release protein in the release of the heterologous proteins ofEscherichia coli: production of plant α-galactosidase.Biotechnol. Lett.17, 815–820 (1995a).CrossRefGoogle Scholar
  157. van der Wal F.J., Luirink J., Oudega B.: Bacteriocin release proteins: mode of action, structure and biotechnological application.FEMS Microbiol. Rev.17, 381–399 (1995b).PubMedCrossRefGoogle Scholar
  158. Vollmer W., Pilsl H., Hantke K., Holtje J.-V., Braun V.: Pesticin displays muramidase activity.J. Bacteriol.179, 1580–1583 (1977).Google Scholar
  159. Whielan K.F., Colleran E., Taylor D.E.: Phage inhibition, colicin resistance, and tellurite resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478.J. Bacteriol.177, 5016–5027 (1995).Google Scholar
  160. Wooldridge K.G., Williams P.H.: Sensitivity ofEscherichia coli to cloacin DF13 involves the major outer membrane protein OmpF.J. Bacteriol.173, 2420–2424 (1991).PubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1998

Authors and Affiliations

  • J. Šmarda
    • 1
  • D. Šmajs
    • 1
  1. 1.Department of Biology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic

Personalised recommendations