Folia Microbiologica

, Volume 44, Issue 5, pp 491–502

Cloning of the putative aldehyde dehydrogenase,aldA, gene fromStreptomyces aureofaciens

  • O. Sprušanský
  • D. Homérová
  • B. Ševčíková
  • J. Kormanec


AStreptomyces aureofaciens gene,gap, encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was previously identified. Hybridization studies suggested the presence of a secondgap gene inS. aureofaciens. To clone the gene,S. aureofaciens subgenomic library was screened with an oligonucleotide probe encoding a peptide motif conserved in all GAPDH. 3352 bp positiveBamHI fragment was identified, the length of which correlated with the hybridization signal. The nucleotide sequence of the fragment was determined, and analysis of the sequence revealed the presence of three open reading frames (ORF). However, none of the genes coded for GAPDH. All three genes formed an operon, consisting of geneorf251, with a high homology to a conserved gene present only in archæabacteria, and thealdA andadhA genes homologous to various eukaryotic and prokaryotic aldehyde- and alcohol-dehydrogenases, with maximum homology to the phenylacetaldehyde dehydrogenases and arylalcohol dehydrogenases, respectively.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul S.F., Gish W., Miller W., Myers E.w., Lipman D.J.: Basic local alignment search tool.J. Mol. Biol. 215, 403–410 (1990).PubMedGoogle Scholar
  2. Ausubel F.M., Brent R., Kingston R.E., Moore D.O., Seidman J.S., Smith J.A. Struhl K.:Current Protcols in Molecular Biology. Wiley, New York 1987.Google Scholar
  3. Beltrametti F., Marconi A.M., Bestetti G., Colombo C., Galli E., Ruzzi M., Zennaro E.: Sequencing and functional analysis of styrene catabolism genes fromPseudomonas fluorescens ST.Appl. Environ. Microbiol. 63, 2232–2239 (1997).PubMedGoogle Scholar
  4. Bibb M.J., Cohen S.N.: Gene expression inStreptomyces: construction and application of promoter-probe plasmid vectors inStreptomyces lividans.Mol. Gen. Genet. 187, 265–277 (1982).PubMedCrossRefGoogle Scholar
  5. Bibb M.J., Findlay P.R., Johnson M.W.: The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences.Gene 30, 157–166 (1984).PubMedCrossRefGoogle Scholar
  6. Brunner N.A., Brinkmann H., Siebers B., Hensel R.: NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase fromThermoproteus tenax.J. Biol. Chem. 273, 6149–6156 (1998).PubMedCrossRefGoogle Scholar
  7. Chater K.F., Hopwood D.A.: Streptomyces, pp. 83–99 in A.L. Sonenshein, J.A. Hoch, R. Losick (Eds):Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology and Molecular Genetics. American Society for Microbiology, Washington (DC) 1993.Google Scholar
  8. Eaton R.W.:p-Cumate catabolic pathway inPseudomonas putida F1: cloning and characterization of DNA carrying thecmt operon.J. Bacteriol. 178, 1351–1362 (1996).PubMedGoogle Scholar
  9. Ferrandez A., Prieto M.A., Garcia J.L., Diaz E.: Molecular characterization of PadA, a phenylacetaldehyde dehydrogenase fromEscherichia coli.FEBS Lett. 7, 23–27 (1997).CrossRefGoogle Scholar
  10. Freiberg C., Fellay R., Bairoch A., Broughton W.J., Rosenthal A., Perret X.: Molecular basis of symbiosis betweenRhizobium and legumes.Nature 387, 394–401 (1997).PubMedCrossRefGoogle Scholar
  11. Gillooly D.J., Robertson A.G., Fewson C.A.: Molecular characterization of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II ofAcinetobacter calcoaceticus.Biochem. J. 330, 1375–1381 (1998).PubMedGoogle Scholar
  12. Habenicht A.: The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase: biochemistry, structure, occurrence and evolution.Biol. Chem. 378, 1413–1419 (1997).PubMedGoogle Scholar
  13. Harayama S., Rekik M., Wubbolts M., Rose K., Leppik R.A., Timmis K.N.: Characterization of five genes in the upper-pathway operon of TOL plasmid pWW0 fromPseudomonas putida and identification of the gene productsJ. Bacteriol. 171, 5048–5055 (1989).PubMedGoogle Scholar
  14. Hempel J., Nicholas H., Lindahl R.: Aldehyde dehydrogenases: widespread structural and functional diversity within a shared framework.Prot. Sci. 2, 1890–1900 (1993).Google Scholar
  15. Hidalgo E., Chen Y.M., Lin E.C., Aguilar J.: Molecular cloning and DNA sequencing of theEscherichia coli K-12ald gene encoding aldehyde dehydrogenase.J. Bacteriol. 173, 6118–6123 (1991).PubMedGoogle Scholar
  16. Hopwood D.A., Bibb M.J., Chater K.F., Kieser T., Bruton C.J., Kieser H.M., Lydiate D.L., Smith C.P., Ward J.M., Schrempf H.:Genetic Manipulation of Streptomyces. A Laboratory Manual. The John Innes Foundation, Norwich 1985.Google Scholar
  17. Hurley T.D., Bosron W.F., Hamilton J.A., Amzel L.M.: Structure of human b1 b1 alcohol dehydrogenase: catalytic effects of non-active-site substitutions.Proc. Nat. Acad. Sci. USA 88, 8149–8153 (1991).PubMedCrossRefGoogle Scholar
  18. James K.D., Williams P.A.:ntn genes determining the early steps in the divergent catabolism of 4-nitrotoluen and toluen inPseudomonas sp. strain TW3.J. Bacteriol. 180, 2043–2049 (1998).PubMedGoogle Scholar
  19. Junker F., Kiewitz R., Cook A.M.: Characterization of thep-toluenesulfonate operontsaMBCD andtsaR inComamonas testosteroni T-2.J. Bacteriol. 179, 919–927 (1997).PubMedGoogle Scholar
  20. Jornvall H., Persson B., Jeffrey J.: Characteristics of alcohol/polyol dehydrogenases. The of zinc-containing long-chain alcohol dehydrogenases.Eur. J. Biochem. 167, 195–201 (1987).PubMedCrossRefGoogle Scholar
  21. Kormanec J., Řežuchová B., Farkašovský M.: Optimization ofStreptomyces aureofaciens transformation and disruption of thehrdA gene encoding a homologue of the principal s factor.J. Gen. Microbiol. 139, 2525–2529 (1993).Google Scholar
  22. Kormanec J., Lempelová A., Farkašovský M., Homérová D.: Cloning, sequencing and expression inEscherichia coli of aStreptomyces aureofaciens gene encoding glyceraldehyde-3-phosphate dehydrogenase.Gene 165, 77–80 (1995).PubMedCrossRefGoogle Scholar
  23. Kormanec J., Ševčíková B., Sprušanský O, Benada O., Kofroňová O., Nováková R., Řežuchová B., Potúčková L., Homérová D.: TheStreptomyces aureofaciens homologue of thewhiB gene is essential for sporulation; its expression c correlates with the developmental stage.Folia Microbiol. 43, 605–612 (1998).Google Scholar
  24. Liu Z.-J., Sun Y.-J., Rose J., Chung Y.-J., Hsiao C.-D., Chang W.-R., Kuo I., Perozich J., Lindahl R., Hempel J., Wang B.-C.: The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossemann fold.Nat. Struct. Biol. 4, 317–326 (1997).PubMedCrossRefGoogle Scholar
  25. Maxam A.M., Gilbert W.: Sequencing end-labelled DNA with base specific chemical cleavages.Methods Enzymol. 65, 449–560 (1980).CrossRefGoogle Scholar
  26. Shaw J.P., Rekik M., Schwager F., Harayama S.: Kinetic studies on benzyl alcohol dehydrogenase encoded by TOL plasmid pWWO. A member of the zinc-containing long chain alcohol dehydrogenase family.J. Biol. Chem. 268, 10842–10850 (1993).PubMedGoogle Scholar
  27. Skarzyński T., Moody P.C.E., Wonacott A.J.: Structure of holo-glyceraldehyde-3-phosphate dehydrogenase fromBacillus stearothermophilus at 1.8 Å resolution.J. Mol. Biol. 193, 171–187 (1987).PubMedCrossRefGoogle Scholar
  28. Steinmetz C.G., Xie P., Weiner H., Hurley T.D.: Structure of mitochondrial aldehyde dehydrogenase: the genetic component of ethanol aversion.Structure 5, 701–711 (1997).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1999

Authors and Affiliations

  • O. Sprušanský
    • 1
  • D. Homérová
    • 1
  • B. Ševčíková
    • 1
  • J. Kormanec
    • 1
  1. 1.Institute of Molecular BiologySlovak Academy of SciencesBratislavaCzech Republic

Personalised recommendations