Folia Microbiologica

, Volume 44, Issue 5, pp 467–486 | Cite as

Animal virus receptors

  • L. Jindrák
  • L. Grubhoffer
Review

Abstract

The term ‘receptor’ is generally accepted as the cell-surface component that participates in virus binding and facilitates subsequent viral infection. Recent advances in technology have permitted the identification of several virus receptors, increasing our understanding of the significance of this initial virus-cell and virus-host interaction. Virus binding was previously considered to involve simple recognition and attachment to a single cell surface molecule by virus attachment proteins. The classical concept of these as single entities that participate in a lock-and-key-type process has been superseded by new data indicating that binding can be a multistep process, often involving different virus-attachment proteins and more than one host-cell receptor.

Abbreviations

AchR

acetylcholine receptor

ASFV

African swine fever virus

Bgp

biliary glycoprotein

BHK

baby hamster kidney

DVDV

bovine viral diarrhea virus

CAR

coxsackie and adenovirus receptor

CCR, CXCR

chemokine receptors

CD

cluster of differentiation

CDR

complementarity-determining region

CEA

carcinoembryonic antigen

CHO

chinese hamster ovary

EMC

encephalomyocarditis

DAF

decay accelerating factor

F

fusion protein

FMDV

foot-and-mouth disease virus

GaLV

gibbon ape leukemia virus

GD1

ganglioside D1

GNA

Galanthus nivalis agglutinin

HA

hemagglutinin

HAV

hepatitis A virus

HBV

hepatitis B virus

HCV

hepatitis C virus

HHV

human herpesvirus

HIV

human immunodeficiency virus

HLA

human leukocyte antigen

HN

hemagglutinin-neuraminidase

HSV

herpes simplex virus

HPTLC

high performance thin-layer chromatography

ICAM

intercellular cell-adhesion molecule

JEV

Japanese encephalitis virus

LDLR

low-density lipoprotein receptor

LESTR

leukocyte derived seven-transmembrane domain receptor

LFA

leukocyte functional antigen

MCAT

murine cationic amino acid transporter

MHC

major histocompatibility complex

MHV

mouse hepatitis virus

MuLV

murine leukemia

NA

neuraminidase

PHA

phytohemagglutinin

PRCV

porcine respiratory coronavirus

PVDF

polyvinylidenedifluoride

RCA

regulator of complement activation

RGD

arginylglycylasparagine

SFV

Semliki forest virus

SIN

Sindbis virus

SIV

simian immunodeficiency virus

TBE

tick-borne encephalitis

TGEV

transmissible gastroenteritis virus

VCAM

vascular cell-adhesion molecule

VEE

Venezuelan equine encephalitis

VLA

very late antigen

WGA

wheat-germ agglutinin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Air G.M., Laver W.G.: The neuraminidase of influenza virus.Proteins6, 341–356 (1989).PubMedCrossRefGoogle Scholar
  2. Albritton L.M., Tseng L., Scadden D., Cunningham J.M.: A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection.Cell57, 659–666 (1989).PubMedCrossRefGoogle Scholar
  3. Alcamí A., Carrascosa A.L., Vinuela E.: Saturable binding sites mediate the entry of African swine fever virus into Vero cells.Virology168, 393–398 (1989).PubMedCrossRefGoogle Scholar
  4. Alcamí A., Carrascosa A.L., Vinuela E.: Interaction of African swine fever virus with macrophages.Virus Res.17, 93–104 (1990).PubMedCrossRefGoogle Scholar
  5. Allaway G.P., Pardoe U.I., Tavakkol A., Burness A.T.H.: Encephalomyocarditis virus attachment, pp. 116–125 in R.L. Crowell, K. Lonberg-Holm (Eds):Virus Attachment and Entry into Cells. American Society for Microbiology, Washington (DC) 1986.Google Scholar
  6. Anderson L.W., Anderson P.K., Liggitt H.D.: Susceptibility of blood-derived monocytes and macrophages to caprine arthritis-encephalitis virus.Infect. Immun.41, 837–840 (1983).PubMedGoogle Scholar
  7. Angulo A., Alcamí A., Vinuela E.: Virus-host interactions in African swine fever: the attachment to cellular receptors.Arch. Virol. (Suppl.)7, 169–183 (1993).Google Scholar
  8. Ardman B., Khiroya R.H., Schwartz R.S.: Recognition of a leukemia-related antigen by an anti-idiotypic antiserum to an anti-gp70 monoclonal antibody.J. Exp. Med.161, 669–686 (1985).PubMedCrossRefGoogle Scholar
  9. Arthur L.O., Bess J.W.J., Sowder R.C., Benveniste R.E., Mann D.L., Chermann J.C., Henderson L.E.: Cellular proteins bound to immunodeficiency viruses: implications for pathogenesis and vaccines.Science258, 1935–1938 (1992).PubMedCrossRefGoogle Scholar
  10. Bahraoui E., Benjouard A., Guetard D., Kolbe H., Gluckman J.-C., Montagnier L.: Study of the interaction of HIV-1 and HIV-2 envelope glycoproteins with the CD4 receptors and role of N-glycans.AIDS Res. Hum. Retrovir.8, 565–573 (1992).PubMedGoogle Scholar
  11. Baker A.T., Varghese J.N., Laver W.G., Air G.M., Colman P.M.: Three-dimensional structure of neuraminidase of subtype N9 from an avian virus.Proteins2, 111–117 (1987).PubMedCrossRefGoogle Scholar
  12. Balzarini J., Schls D., Neyts J., Van Damme E., Peumans W., De Clerq E.: Alpha-1,3- and alpha-1,6-d-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infectionin vitro.Antimicrob. Agents Chemother.35, 410–416 (1991).PubMedGoogle Scholar
  13. Ban J., Portetelle D., Altaner C., Horion B., Milan D., Krchnak V., Burny A., Kettmann R.: Isolation and characterization of a 2.3-kilobase-pair cDNA fragment encoding the binding domain of the bovine leukemia virus cell receptor.J. Virol.67, 1050–1057 (1993).PubMedGoogle Scholar
  14. Bass D.M., Mackow E.R., Greenberg H.B.: Identification and partial characterization of a rhesus rotavirus binding glycoprotein on murine enterocytes.Virology183, 602–610 (1991).PubMedCrossRefGoogle Scholar
  15. Bates P., Young J.A.T., Varmus H.E.: A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor.Cell74, 1043–1051 (1993).PubMedCrossRefGoogle Scholar
  16. Becker S., Spiess M., Klenk H.-D.: The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus.J. Gen. Virol.76, 393–399 (1995).PubMedGoogle Scholar
  17. Benkirane M., Corbeau P., Housset V., Devaux C.: An antibody that binds the immunoglobulin CDR3-like region of the CD4 molecule inhibits provirus transcription in HIV-infected T cells.EMBO J.12, 4909–4921 (1993).PubMedGoogle Scholar
  18. Bergelson J.M., Krithivas A., Celi L., Droguett G., Horwitz M.S., Wickham T., Crowell R.L., Finberg R.W.: The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses.J. Virol.72, 415–419 (1998).PubMedGoogle Scholar
  19. Bergelson J.M., Shepley M.P., Chan M.C., Hemler M.E., Finberg R.W.: Identification of the integrin VLA-2 as a receptor for echovirus 1.Science255, 1718–1720 (1992).PubMedCrossRefGoogle Scholar
  20. Bergelson J.M., St. John N., Kawaguchi S., Chan M.C., Stubdal H., Modlin J., Finberg R.W.: Infection by echoviruses 1 and 8 depends on the α2 subunit of human VLA-2.J. Virol.67, 6847–6852 (1993).PubMedGoogle Scholar
  21. Bergelson J.M., Chan M., Solomon K.R., St. John N.F., Lin J.H., Finberg R.W.: Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses.Proc. Nat. Acad. Sci. USA91, 6245–6248 (1994).PubMedCrossRefGoogle Scholar
  22. Berinstein A., Roivainen M., Hovi T., Mason P.W., Baxt B.: Antibodies to the vitronectin receptor (integrin αVβ3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells.J. Virol.69, 2664–2666 (1995).PubMedGoogle Scholar
  23. Bhat S., Spitalnik S.L., Gonzalez-Scarano F., Silberberg D.H.: Galactosylceramide or a derivative is an essential component of the neural receptor for HIV-1 envelope glycoprotein gp120.Proc. Nat. Acad. Sci. USA88, 7131–7134 (1991).PubMedCrossRefGoogle Scholar
  24. Bork P., Holm L., Sander C.: The immunoglobulin fold. Structural classification, sequence patterns and common core.J. Mol. Biol.242, 309–320 (1994).PubMedGoogle Scholar
  25. Braun J.M.A., Gras G., Chapuis F., Sommerfelt M.A., Clapham P.R., Weiss R.A., Asjo B., Gluckman J.-C., Dormont D., Barre-Sinoussi F., pp. 465–468 in S.F. Schlossman (Ed.):Leucocyte Typing V: White Cell Differentiation Antigens. Oxford University Press, Oxford-New York 1995.Google Scholar
  26. Breau W.C., Atwood W.J., Norkin L.C.: Class I major histocompatibility proteins are an essential component of the simian virus 40 receptor.J. Virol.66, 2037–2045 (1992).PubMedGoogle Scholar
  27. Broder C.C., Collman R.G.: Chemokine receptors and HIV.J. Leukocyt. Biol.62, 20–29 (1997).Google Scholar
  28. Brossmer R., Isecke R., Herrler G.: A sialic acid analogue acting as a receptor determinant for binding but not for infection by influenza C virus.FEBS Lett.323, 96–98 (1993).PubMedCrossRefGoogle Scholar
  29. Broughan J.H., Wunner W.H.: Characterization of protein involvement in rabies virus binding to BHK-21 cells.Arch. Virol.140, 75–93 (1995).PubMedCrossRefGoogle Scholar
  30. Brown K.E., Anderson S.M., Young N.S.: Erythrocyte P antigen: cellular receptor for B19 parvovirus.Science262, 114–117 (1993).PubMedCrossRefGoogle Scholar
  31. Buckland R., Wild T.F.: Is CD46 the cellular receptor for measles virus?Virus Res.48, 1–9 (1997).PubMedCrossRefGoogle Scholar
  32. Bullough P.A., Hugson F.M., Skehel J.J., Wiley D.C.: Structure of influenza hemagglutinin at the pH of membrane fusion.Nature371, 37–43 (1994).PubMedCrossRefGoogle Scholar
  33. Burmeister W.P., Ruigrok R.W.H., Cusack S.: The 2.2 Å resolution crystal structure of influenza B neuraminidase and its complex with sialic acid.EMBO J.11, 49–56 (1992).PubMedGoogle Scholar
  34. Chattopadhyay S.K., Lander M.R., Gupta S., Rands E., Lowy D.R.: Origin of mink cytopathic focus-forming (MCF) viruses: comparison with ecotropic and xenotropic murine leukemia virus genomes.Virology113, 465–483 (1981).PubMedCrossRefGoogle Scholar
  35. Crane S.E., Buzy J., Clements J.E.: Identification of cell membrane proteins that bind visna virus.J. Virol.65, 6137–6143 (1991).PubMedGoogle Scholar
  36. Crowell R.L., Tomko R.P.: Receptors for picornaviruses, pp. 75–79 in E. Wimmer (Ed.):Cellular Receptors for Animal Viruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1994.Google Scholar
  37. Dalgleish A.G., Beverley P.C., Clapham P.R., Crawford D.H., Greaves M.F., Weiss A.: The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus.Nature (London)312, 763–767 (1984).CrossRefGoogle Scholar
  38. Dallocchio F., Tomasi M., Bellini T.: Activation of the Sendai virus fusion protein by receptor binding.Biochem. Biophys. Res. Commun.208, 36–41 (1995).PubMedCrossRefGoogle Scholar
  39. Dalziel K.G., Hopkins J., Watt N.J., Dutia B.M., Clarke M.A.K., McConnell I.: Identification of a putative cellular receptor for the lentivirus visna virus.J. Gen. Virol.72, 1905–1911 (1991).PubMedGoogle Scholar
  40. Delmas B., Gelfi J., L'Haridon R., Vogel L.K., Sjostrom H., Noren O., Laude H.: Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV.Nature (London)357, 417–422 (1992).CrossRefGoogle Scholar
  41. Delmas G., Gelfi H., Sjostrom H., Noren O., Laude H.: Further characterization of aminopeptidase N as a receptor for coronaviruses.Adv. Exp. Med. Biol.342, 293–298 (1993).PubMedGoogle Scholar
  42. De Meyer S., Gong Z.J., Suwandhi W., van Pelt J., Soumillion A., Yap S.H.: Organ and species specificity of hepatitis B virus (HBV) infection: a review of literature with a special reference to preferential attachment of HBV to human hepatocytes.J. Virol. Hepat.4, 145–153 (1997).CrossRefGoogle Scholar
  43. Doring R.E., Marcil A., Chopra A., Richardson C.D.: The human CD46 molecule is a receptor for measles virus (Edmonston strain).Cell75, 295–305 (1993).CrossRefGoogle Scholar
  44. Dunster L.M., Schneider-Schaulies J., Loffler S., Lankes W., Schwartz-Albiez R., Lottspeich F., ter Meulen V.: Moesin: a cell membrane protein linked with susceptibility to measles virus infection.Virology198, 265–274 (1994).PubMedCrossRefGoogle Scholar
  45. Durrer P., Gaudin Y., Ruigrok R.W.H., Graf R., Brunner J.: Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses.J. Biol. Chem.270, 17575–17581 (1995).PubMedCrossRefGoogle Scholar
  46. Dveksler G.S., Dieffenbach C.W., Cardellichio C.B., McCuaig K., Pensiero M.N., Jiang G.-S., Beauchemin N., Holmes K.V.: Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus-A59.J. Virol.67, 1–8 (1993).PubMedGoogle Scholar
  47. Dveksler G.S., Pensiero M.N., Cardellichio C.B., Williams R.K., Jiang G.-S., Holmes K.V., Dieffenbach C.W.: Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV.J. Virol.65, 6881–6891 (1991).PubMedGoogle Scholar
  48. Dveksler G.S., Pensiero M.N., Dieffenbach C.W., Cardellichio C.B., Basile A.A., Elias P.E., Holmes K.V.: Mouse coronavirus MHV-A59 and blocking anti-receptor monoclonal antibody bind to the N-terminal domain of cellular receptor MHVR.Proc. Nat. Acad. Sci. USA90, 1716–1720 (1993).PubMedCrossRefGoogle Scholar
  49. Eglitis M.A., Eiden M.V., Wilson C.A.: Gibbon ape leukemia virus and the amphotropic murine leukemia virus 4070A exhibit an unusual interference pattern on E36 Chinese hamster cells.J. Virol.67, 5472–5477 (1993).PubMedGoogle Scholar
  50. Epand R.M., Nir S., Parolini M., Flanagan T.D.: The role of the ganglioside GD1a as a receptor for Sendai virus.Biochemistry34, 1084–1089 (1995).PubMedCrossRefGoogle Scholar
  51. Evander M., Frazer I.H., Payne E., Qi Y.M., Hengst K., McMillan N.A.J.: Identification of the α6 integrin as a candidate receptor for papillomaviruses.J. Virol.71, 2449–2456 (1997).PubMedGoogle Scholar
  52. Fantini J., Cook D.G., Nathanson N., Spitalnik S.L., Gonzalez-Scarano F.: Infection of colonic epithelial cell lines by type 1 human immunodeficiency virus is associated with cell surface expression of galactosylceramide, a potential pg120 receptor.Proc. Nat. Acad. Sci. USA90, 2700–2704 (1993).PubMedCrossRefGoogle Scholar
  53. Feng Y., Broder C.C., Kennedy P.E., Berger E.A.: HIV-1 entry co-factor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor.Science272, 872–877 (1996).PubMedCrossRefGoogle Scholar
  54. Fenouillet E., Gluckman J.-C., Jones I.M.: Biological roles of HIV-1 glycoprotein glycans. Paper presented atGlyco XII: 12th Internat. Symp. on Glycoconjugates, Kraków (Poland) 1993.Google Scholar
  55. Fenouillet E., Gluckman J.-C., Jones I.M.: Functions of HIV envelope glycans.TIBS19, 65–71 (1994).PubMedGoogle Scholar
  56. Fischinger P.J., Nomura S., Bolognesi D.P.: A novel murine oncornavirus with dual eco- and xenotropic properties.Proc. Nat. Acad. Sci. USA72, 5150–5155 (1975).PubMedCrossRefGoogle Scholar
  57. Fukudome K., Yoshie O., Konno T.: Comparison of human, simian, and bovine rotaviruses for requirement of sialic acid in hemagglutination and cell adsorption.Virology172, 196–205 (1989).PubMedCrossRefGoogle Scholar
  58. Furuta Y., Eriksson K., Svennerholm B., Fredman P., Horal P., Jeansson S., Vahlne A., Holmgren J., Czerkinsky C.: Infection of vaginal and colonic epithelial cells by the human immunodeficiency virus type 1 is neutralized by antibodies raised against conserved epitopes on the envelope glycoprotein gp120.Proc. Nat. Acad. Sci. USA91, 12559–12563 (1994).PubMedCrossRefGoogle Scholar
  59. Gastka M., Morvath J., Lentz T.: Rabies virus binding to the nicotinic acetylcholine receptor α subunit demonstrated by virus overlay protein binding assay.J. Gen. Virol.77, 2437–2440 (1996).PubMedGoogle Scholar
  60. Gattegno L., Ramdani A., Jouault T., Saffar L., Gluckman J.-C.: Lectin-carbohydrate interactions and infectivity of human immunodeficiency virus type 1 (HIV-1).AIDS Res. Hum. Retrovir.8, 27–37 (1992).PubMedCrossRefGoogle Scholar
  61. Geyer H., Holschbach C., Hunsmann G., Schneider J.: Carbohydrates of human immunodeficiency virus.J. Biol. Chem.263, 11760–11767 (1988).PubMedGoogle Scholar
  62. Gomez-Puertas P., Rodríguez F., Oviedo J.M., Ramiro-Ibánez F., Ruiz-Gonzalvo F., Covadonga A., Escribano J.M.: Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization.J. Virol.70, 5689–5694 (1996).PubMedGoogle Scholar
  63. Gonda M.A., Luther D.G., Fong S.E., Tobin G.J.: Bovine immunodeficiency virus: molecular biology and virus-host interactions.Virus Res.32, 155–181 (1994).PubMedCrossRefGoogle Scholar
  64. Gonzales-Scarano F., Pobjecky N., Nathanson N.: La Crosse bunyavirus can mediate pH-dependent fusion from without.Virology132, 222–225 (1984).CrossRefGoogle Scholar
  65. Gratama J.W., Ernberg I.: Molecular epidemiology of Epstein-Barr virus infection.Adv. Cancer Res.67, 197–255 (1995).PubMedGoogle Scholar
  66. Greve J.M., Davis G., Meyer A.M., Forte C.P., Yost S.C., Marlor C.W., Kamarck M.E., McClelland A.: The major human rhinovirus receptor is ICAM-1.Cell56, 839–847 (1989).PubMedCrossRefGoogle Scholar
  67. Grewal K.K., Hamid J., Pardoe I.U., Burness A.T.H.: Transfection of bovine cells with glycophorin A cDNA induces susceptibility to encephalomyocarditis virus infection. Abstr. A-11, 7th Eur. Study Group Mol. Biol. Picornaviruses, 1991.Google Scholar
  68. Gyu Y., King D.S., Shin Y.K.: Insertion of a coiled-coil peptide from influenza virus hemagglutinin into membranes.Science266, 274–276 (1994).CrossRefGoogle Scholar
  69. Hammar L., Hirsch I., Machado A.A., De Mareuil J., Baillon J.G., Bolmont C., Chermann J.-C.: Lectin-mediated effects on HIV type 1 infectionin vitro.AIDS Res. Hum. Retrovir.11, 87–95 (1995).PubMedGoogle Scholar
  70. Harouse J.M., Kunsch C., Hartle H.T., Laughlin M.A., Hoxie J.A., Wigdahl B., Gonzalez-Scarano F.: CD4-independent infection of human neural cells by human immunodeficiency virus type 1.J. Virol.63, 2527–2533 (1989).PubMedGoogle Scholar
  71. Harrowe G., Mitsuhashi M., Payan D.G.: Measles virus-substance P receptor interactions.J. Clin. Invest.85, 1324–1327 (1990).PubMedGoogle Scholar
  72. Harrowe G., Sudduth-Klinger J., Payan D.G.: Measles virus-substance P receptor interaction: Jurkat lymphocytes transfected with substance P receptor cDNA enhance measles virus fusion and replication.Cell. Mol. Neurobiol.12, 397–409 (1992).PubMedCrossRefGoogle Scholar
  73. Hartley J.W., Wolford N.K., Old L.J., Rowe W.P.: A new class of murine leukemia virus associated with development of spontaneous lymphomas.Proc. Nat. Acad. Sci. USA74, 789–792 (1977).PubMedCrossRefGoogle Scholar
  74. Hartshorn K.L., Sastry K., Brown D., White M.R., Okarma T.B., Lee Y.-M., Tauber A.I.: Conglutinin acts as an opsonin for influenza A viruses.J. Immunol.151, 6265–6273 (1993).PubMedGoogle Scholar
  75. Haywood A.M.: Virus receptors: binding, adhesion strengthening, and changes in viral structure.J. Virol.68, 1–5 (1994).PubMedGoogle Scholar
  76. Helenius A., Kartenbeck J., Simons K., Fries E.: On the entry of Semliki forest virus into BHK-21 cells.J. Cell. Biol.84, 404–420 (1980).PubMedCrossRefGoogle Scholar
  77. Helenius A., Morein B., Fries E., Simons K., Robinson P., Schirrmacher V., Terhorst C., Strominger J.L.: Human (HLA-A and HLA-B) and murine (H-2K and H2D) histocompatibility antigens are cell surface receptors for Semliki forest virus.Proc. Nat. Acad. Sci. USA75, 3846–3850 (1978).PubMedCrossRefGoogle Scholar
  78. Herrler G.: Transmissible gastroenteritis virus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity.J. Virol.70, 5634–5637 (1996).PubMedGoogle Scholar
  79. Hertogs K., Leenders W.P., Depla E., De Bruin W.C., Meheus L., Raymackers J., Moshage H., Yap S.H.: Endonexin II, present on human liver plasma membranes, is a specific binding protein of small hepatitis B virus (HBV) envelope protein.Virology197, 549–557 (1993).PubMedCrossRefGoogle Scholar
  80. Hirsch V.M., Johnson P.R.: Pathogenic diversity of simian immunodeficiency viruses.Virus Res.32, 183–203 (1994).PubMedCrossRefGoogle Scholar
  81. Hofer F., Gruenberger M., Kowalski H., Machat H., Huettinger M., Kuechler E., Blaas D.: Members of the low density lipoprotein receptor family mediate cell entry of a minor group common cold virus.Proc. Nat. Acad. Sci. USA91, 1839–1842 (1994).PubMedCrossRefGoogle Scholar
  82. Holschbach C., Schneider J., Geyer H.: Glycosylation of the envelope glycoprotein gp130 of simian immunodeficiency virus from sooty mangabey (Cercocebus atys).Biochem. J.267, 759–766 (1990).PubMedGoogle Scholar
  83. Horuk R., Hesselgesser J., Zhou Y., Faulds D., Halks-Miller M., Harvey S., Taub D., Samson M., Parmentier M., Rucker J., Doranz B.J., Doms R.W.: The CC chemokine I-309 inhibits CCR8-dependent infection by diverse HIV-1 strains.J. Biol. Chem.273, 386–391 (1998).PubMedCrossRefGoogle Scholar
  84. Hosie M.J., Willett B.J., Dunsford T.H., Jarrett O., Neil J.C.: A monoclonal antibody which blocks infection with feline immunodeficiency virus identifies a possible non-CD4 receptor.J. Virol.67, 1667–1671 (1993).PubMedGoogle Scholar
  85. Huang T., Campadelli-Fiume G.: Anti-idiotypic antibodies mimicking glycoprotein D of herpes simplex virus identify a cellular protein required for virus spread from cell to cell and virus-induced polykaryocytosis.Proc. Nat. Acad. Sci. USA93, 1836–1840 (1996).PubMedCrossRefGoogle Scholar
  86. Huang R.T.C., Lichtenberg B., Rick O.: Involvement of annexin V in the entry of influenza viruses and role of phospholipids in infection.FEBS Lett.392, 59–62 (1996).PubMedCrossRefGoogle Scholar
  87. Huber S.A.: VCAM-1 is a receptor for encephalomyocarditis virus on murine vascular endothelial cells.J. Virol.68, 3453–3458 (1994).PubMedGoogle Scholar
  88. Jackson T., Ellard F.M., Ghazaleh R.A., Brookes S.M., Blakemore W.E., Corteyn A.H., Stuart D.I., Newman J.W.I., King A.M.Q.: Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate.J. Virol.70, 5282–5287 (1996).PubMedGoogle Scholar
  89. Ito T., Couceiro J.N.S.S., Kelm S., Baum L.G., Krauss S., Castrucci M.R., Donatelli I., Kida H., Paulson J.C., Webster R.G., Kawaoka Y.: Molecular basis for the generation in pigs of influenza A viruses with pandemic potential.J. Virol.72, 7667–7376 (1998).Google Scholar
  90. Jin Y.-M., Pardoe I.U., Burness A.T., Michalak T.I.: Identification and characterization of the cell surface 70-kilodalton sialoglycoprotein(s) as a candidate receptor for encephalomyocarditis virus on human nucleated cells.J. Virol.68, 7308–7319 (1994).PubMedGoogle Scholar
  91. Jones P.L.S.J., Korte T., Blumenthal R.: Conformational changes in cell surface HIV-1 envelope glycoproteins are triggered by cooperation between cell surface CD4 and co-receptors.J. Biol. Chem.273, 404–409 (1998).PubMedCrossRefGoogle Scholar
  92. Jungeblut C.W., Kodza H.: Studies of propagation of Col SK group of viruses in various tissue culture media.Proc. Soc. Exp. Biol. Med.96, 133–139 (1957).PubMedGoogle Scholar
  93. Kaplan G., Totsuka A., Thompson P., Akatsuka A., Moritsugu Y., Feinstone S.M.: Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus.EMBO J.15, 4282–4296 (1996).PubMedGoogle Scholar
  94. Karlsson K.A., Stromberg N.: Overlay and solid-phase analysis of glycolipid receptors for bacteria and viruses.Meth. Enzymol.138, 220–232 (1987).PubMedGoogle Scholar
  95. Karlsson K.A., Angstrom J., Bergstrom J., Lanne B.: Microbial interaction with animal cell surface carbohydrates.Acta Pathol. Microbiol. Immunol.100, 71–83 (1992).Google Scholar
  96. Kauffman R.S., Noseworthy J.H., Nepom J.T., Finberg R., Fields B.N., Greene M.I.: Cell receptors for the mammalian reovirus. II. Monoclonal anti-idiotypic antibody blocks viral binding to cells.J. Immunol.131, 2539–2541 (1983).PubMedGoogle Scholar
  97. Kavanaugh M.P., Miller D.G., Zhang W., Law W., Kozak S.L., Kebat D., Miller A.D.: Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters.Proc. Nat. Acad. Sci. USA91, 7071–7075 (1994).PubMedCrossRefGoogle Scholar
  98. Keljo D.J., Smith A.K.: Characterization of binding of simian rotavirus SA11 to cultured epithelial cells.J. Pediatr. Gastroenterol. Nutr.7, 249–256 (1988).PubMedGoogle Scholar
  99. Kim J.W., Closs E.I., Albritton L.M., Cunningham J.M.: Transport of cationic amino acids by the mouse ecotropic retrovirus receptor:Nature (London)352, 725–728 (1991).CrossRefGoogle Scholar
  100. Kimura T., Kimura-Kuroda J., Nagashima K., Yasui K.: Analysis of virus-cell binding characteristics on the determination of Japanese encephalitis virus susceptibility.Arch. Virol.139, 239–251 (1994).PubMedCrossRefGoogle Scholar
  101. Klatzmann D., Champagne E., Chamaret S., Gruest J., Guetard D., Hercend T., Gluckman J.-C., Montagnier L.: T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV.Nature (London)312, 767–768 (1984).CrossRefGoogle Scholar
  102. Kopecký J., Grubhoffer L., Kovář V., Jindrák L., Vokurková D.: A putative host-cell receptor for tick-borne encephalitis virus identified by anti-idiotypic antibodies and virus affinoblotting.Intervirology42, 9–16 (1999).PubMedCrossRefGoogle Scholar
  103. Lankes W.T., Furthmayer H.: Moesin: a member of the protein 4.1-talin-ezrin family of proteins.Proc. Nat. Acad. Sci. USA88, 8297–8301 (1991).PubMedCrossRefGoogle Scholar
  104. Lankes W.T., Griesmacher A., Grunwald J., Schwartz-Albiez R., Keller R.: A heparin-binding protein involved in inhibition of smooth muscle cell proliferation.Biochem. J.251, 831–842 (1988).PubMedGoogle Scholar
  105. Lawlence M.B., Springer T.A.: Leukocytes roll on a selection at physiologic flow rates: distinction from and prerequisite for adhesion through integrins.Cell65, 859–873 (1991).CrossRefGoogle Scholar
  106. Leonard C.K., Spellman M.W., Riddle L., Harris R.J., Thomas J.N., Gregory T.J.: Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells.J. Biol. Chem.265, 10373–10382 (1990).PubMedGoogle Scholar
  107. Li Y., Luo L., Rasool N., Kang C.Y.: Glycosylation is necessary for the correct folding of human immunodeficiency virus gp120 in CD4 binding.J. Virol.67, 584–588 (1993).PubMedGoogle Scholar
  108. Liu C., Eichelberger M.C., Compans R.W., Air G.M.: Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding.J. Virol.69, 1099–1106 (1995).PubMedGoogle Scholar
  109. Ludwig G.V., Kondig J.P., Smith J.F.: A putative receptor for Venezuelan equine encephalitis virus from mosquito cells.J. Virol.70, 5592–5599 (1996).PubMedGoogle Scholar
  110. Maddon P.J., Dalgleish A.G., McDougal J.S., Clapham R.A., Weiss R.A., Axel R.: The T4 gene encodes for the AIDS virus receptor and is expressed in the immune system and in the brain.Cell47, 333–348 (1986).PubMedCrossRefGoogle Scholar
  111. Maldov D.G., Karganova G.G., Timofeev A.V.: Tick-borne encephalitis virus interaction with the target cells.Arch. Virol.127, 321–325 (1992).PubMedCrossRefGoogle Scholar
  112. Marriott S.J., Roeder D.J., Consigli R.A.: Anti-idiotypic antibodies to a polyomavirus monoclonal antibody recognize cell surface components of mouse kidney cells and prevent polyomavirus infection.J. Virol.61, 2747–2753 (1987).PubMedGoogle Scholar
  113. Marsh M., Helenius A.: Adsorptive endocytosis of Semliki forest virus.J. Mol. Biol.142, 439–454 (1980).PubMedCrossRefGoogle Scholar
  114. Marsh M., Bolzau E., Helenius A.: Penetration of Semliki forest virus from acidic prelysosomal vacuoles.Cell32, 931–940 (1983).PubMedCrossRefGoogle Scholar
  115. Marsh M., Matlin K., Simons K., Reggio H., White J., Kartenbeck J., Helenius A.: Are lysosomes a site of enveloped-virus penetration?Cold Spring Harbor Symp. Quant. Biol.46, 835–843 (1982).PubMedGoogle Scholar
  116. Matlin K.S., Reggio J., Helenius A., Simons K.: Entry pathway of influenza virus in a canine kidney cell line.J. Cell Biol.91, 601–613 (1981).PubMedCrossRefGoogle Scholar
  117. Matrosovich M., Miller Podraza H., Teneberg S., Robertson J., Karlsson K.A.: Influenza viruses display high-affinity binding to human polyglycosylceramides represented on a solid-phase assay surface.Virology223, 413–416 (1996).PubMedCrossRefGoogle Scholar
  118. Mecham R.P.: Receptors for laminin on mammalian cells.FASEB J.5, 2538–2546 (1991).PubMedGoogle Scholar
  119. Mendelsohn C.L., Wimmer E., Racaniello V.R.: Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily.Cell56, 855–865 (1989).PubMedCrossRefGoogle Scholar
  120. Mendez E., Barias C.F., Lopez S.: Binding to sialic acids is not an essential step for the entry of animal rotaviruses to epithelial cells in culture.J. Virol.67, 5253–5259 (1993).PubMedGoogle Scholar
  121. McClintock P.R., Billups L.C., Notkins A.L.: Receptors for encephalomyocarditis virus on murine and human cells.Virology106, 261–272 (1980).PubMedCrossRefGoogle Scholar
  122. Miller D.G., Miller A.D.: Tunicamycin treatment of CHO cells abrogates multiple blocks to retrovirus infection, one of which is due to a secreted inhibitor.J. Virol.66, 78–84 (1992).PubMedGoogle Scholar
  123. Miller D.G., Miller D.: A family of retroviruses that utilize related phosphate transporters for cell entry.J. Virol.68, 8270–8276 (1994).PubMedGoogle Scholar
  124. Miller D.G., Edwards R.H., Miller A.D.: Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus.Proc. Nat. Acad. Sci. USA91, 78–82 (1994).PubMedCrossRefGoogle Scholar
  125. Mizuochi T., Spellman M.W., Larkin M., Solomon J., Basa L., Feizi T.: Carbohydrate structures of the human immunodeficiency virus (HIV) recombinant envelope glycoprotein gp120 produced in Chinese-hamster ovary cells.Biochem. J.254, 599–603 (1988).PubMedGoogle Scholar
  126. Mizuochi T., Matthews T.J., Kato M., Hamako J., Titani K., Solomon J., Feizi T.: Diversity of oligosaccharide structures on the envelope glycoprotein gp120 of human immunodeficiency virus 1 from the lymphoblastoid cell line H9. Presence of complex-type oligosaccharides with bisecting N-acetylglucosamine residues.J. Biol. Chem.265, 8519–8524 (1990).PubMedGoogle Scholar
  127. Moore J.P., Trkola A., Dragic T.: Co-receptors for HIV-1 entry.Curr. Opin. Immunol.9, 551–562 (1997).PubMedCrossRefGoogle Scholar
  128. Myers G., Lenroot R.: HIV variation studies; HIV glycosylation: What does it portend?AIDS Res. Hum. Retrovir.8, 1459–1460 (1992).PubMedGoogle Scholar
  129. Naito S., Matsumoto S.: Identification of cellular actin within the rabies virus.Virology91, 151–163 (1978).PubMedCrossRefGoogle Scholar
  130. Nandi P., Charpilienne A., Cohen J.: Interaction of rotavirus particles with liposomes.J. Virol.66, 3363–3367 (1992).PubMedGoogle Scholar
  131. Naniche D., Varior-Krishnan G., Cervoni F., Wild T.F., Rossi B., Rabourdin-Combe C., Gerlier D.: Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus.J. Virol.67, 6025–6032 (1993).PubMedGoogle Scholar
  132. Naniche D., Wild C., Rabourdin-Combe C., Gerlier D.: Measles virus hæmagglutinin induces down-regulation of gp57/67, a molecule involved in virus binding.J. Gen. Virol.74, 1073–1079 (1993).PubMedGoogle Scholar
  133. Narayan O., Kennedy-Stoskopf S., Sheffer D., Griffin D.E., Clements J.E.: Activation of caprine arthritis-encephalitis virus expression during maturation of monocytes to macrophages.Infect. Immun.41, 67–73 (1983).PubMedGoogle Scholar
  134. Nėdellec P., Dveksler G.S., Daniels E., Turbide C., Chow B., Basile A.A., Holmes K.V., Beauchemin N.: Bgp2, a new member of the carcinoembryonic antigen-related gene family, encodes an alternative receptor for mouse hepatitis viruses.J. Virol.68, 4525–4537 (1994).PubMedGoogle Scholar
  135. Neurath A.R., Strick N.: The putative cell receptors for hepatitis B virus (HBV), annexin V and apolipoprotein, H, bind to lipid components of HBV.Virology204, 475–447 (1994).PubMedCrossRefGoogle Scholar
  136. Nicholson-Weller A., Burge J., Fearon D.T., Weller P.F., Austen K.F.: Isolation of a human erythrocyte membrane glyco-protein with decay accelerating activity for C3 convertases of the complement system.J. Immunol.129, 184–189 (1982).PubMedGoogle Scholar
  137. Nieva J.L., Bron R., Corver J., Wilschut J.: Membrane fusion of Semliki forest virus requires sphingolipids in the target membrane.EMBO J.13, 2797–2808 (1994).PubMedGoogle Scholar
  138. Norkin L.C.: Virus receptors: implication for pathogenesis and the design of antiviral agents.Clin. Microbiol. Rev.8, 293–315 (1995).PubMedGoogle Scholar
  139. Noseworthy J.H., Fields B.N., Dichter M.A., Sobotka C., Pizer E., Perry L.L., Nepom J.T., Greene M.I.: Cell receptors for the mammalian reovirus. I. Syngeneic monoclonal anti-idiotypic antibody identifies a cell surface receptor for reovirus.J. Immunol.131, 2533–2538 (1983).PubMedGoogle Scholar
  140. O'Hara B., Johann S.V., Klinger H.P., Blair D.G., Rubinson H., Dunn K.J., Sass P., Vitek S.M., Robins T.: Characterization of a human gene conferring sensitivity to infection by gibbon ape leukemia virus.Cell. Growth Differ.1, 119–127 (1990).PubMedGoogle Scholar
  141. Okhuma S., Poole B.: Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents.Proc. Nat. Acad. Sci. USA75, 3327–3331 (1978).CrossRefGoogle Scholar
  142. Pardoe I.U., Grewal K.K., Baldeh P., Hamid J., Burnes A.T.H.: Persistent infection of K562 cells by encephalomyocarditis virus.J. Virol.64, 6040–6044 (1990).PubMedGoogle Scholar
  143. Payne H.R., Storz J., Henk W.G.: Initial events in bovine coronavirus infection: analysis through immunogold probes and lysosomotropic inhibitors.Arch. Virol.114, 175–189 (1990).PubMedCrossRefGoogle Scholar
  144. Pifat D.Y., Ennis W.H., Ward J.M., Oberste M.S., Gonda M.A.: Persistent infection of rabbits with the bovine immunodeficiency-like virus.J. Virol.66, 4518–4524 (1992).PubMedGoogle Scholar
  145. Pileri P., Uematsu Y., Gampagnoli S., Galli G., Falugi F., Petracca R., Weiner A.J., Houghton M., Rosa D., Grandi G., Abrignani S.: Binding of hepatitis C virus to CD81.Science282, 938–940 (1998).PubMedCrossRefGoogle Scholar
  146. Poste G., Pasternak C.A.: Virus-induced cell fusion, pp. 305–357 in G. Poste, G.L. Nicholson (Eds):Cell Surface Reviews, Vol. 4. Elsevier/North-Holland, Amsterdam 1978.Google Scholar
  147. Price P.: Are MHC proteins cellular receptors for CMV?Immunol. Today15, 295–296 (1994).PubMedCrossRefGoogle Scholar
  148. Protopopova E.V., Konavalova S.N., Loktev V.B.: Isolation of a cellular receptor for tick-borne encephalitis virus using anti-idiotypic antibodies.Vopr. Virusol.42, 264–268 (1997).PubMedGoogle Scholar
  149. Qingxue L., Spriggs M.K., Kovats S., Turk S.M., Comeau M.R., Nepom B., Hutt-Fletcher L.M.: Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes.J. Virol.71, 4657–4662 (1997).Google Scholar
  150. Ramos-Castaneda J., Imbert J.L., Barron B.L., Ramos C.: A 65-kDa trypsin-sensible membrane cell protein as a possible receptor for dengue virus in cultured neuroblastoma cells.J. Neurovirol.3, 435–440 (1997).PubMedCrossRefGoogle Scholar
  151. Rey F.A., Heinz F.X., Mandl C., Kunz C., Harrison S.C.: The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution.Nature375, 291–298 (1995).PubMedCrossRefGoogle Scholar
  152. Roivainen M., Piirainen L., Hovi T., Virtanen I., Riikonen T., Heino J., Hyypia T.: Entry of coxsackievirus A9 into host cells: specific interactions with αVβ3 integrin, the vitronectin receptor.Virology203, 357–365 (1994).PubMedCrossRefGoogle Scholar
  153. Roivainen M., Piirainen L., Hovi T.: Efficient RGD-independent entry process of coxsackievirus A9.Arch. Virol.141, 1909–1919 (1996).PubMedCrossRefGoogle Scholar
  154. Ruiz M.-C., Alonso-Torre S.R., Charpilienne A., Vasseur M., Michelangeli F., Cohen J., Alvarado F.: Rotavirus interaction with isolated membrane vesicles.J. Virol.68, 4009–4016 (1994).PubMedGoogle Scholar
  155. Sattentau Q.J., Clapham P.R., Weiss R.A., Beverley P.C., Montagnier L., Alhalabi M.F., Gluckman J.-C., Klatzmann D.: The human and simian immunodeficiency viruses HIV-1, HIV-2, and SIV interact with similar epitopes on their cellular receptor, the CD4 molecule.AIDS2, 101–105 (1988).PubMedCrossRefGoogle Scholar
  156. Sauter N.K., Glick G.D., Crowther R.L., Park S-J., Eisen M.B., Skehel J.J., Knowles J.R., Wiley D.C.: Crystallographic detection of a second ligand binding site in influenza virus hemagglutinin.Proc. Nat. Acad. Sci. USA89, 324–328 (1992).PubMedCrossRefGoogle Scholar
  157. Sharma A., Rao Z., Fry E., Booth T., Jones E.Y., Rowlands D.J., Simmons D.L., Stuart D.I.: Specific interactions between human integrin αVβ3 and chimeric hepatitis B virus core particles bearing the receptor-binding epitope of foot-and-mouth disease virus.Virology239, 150–157 (1997).PubMedCrossRefGoogle Scholar
  158. Schultze B., Krempl C., Ballesteros M.L., Shaw L., Schauer R., Enjuanes L., Herrler G.: Transmissible gastroenteritis virus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity.J. Virol.70, 5634–5637 (1996).PubMedGoogle Scholar
  159. Simeoni L., Forte P., Auiti A., Candido A., Campese A.F., Fedele G., Di Tomaso F., Navarra M., Fantoni A.: Transgenic mice expressing human HIV receptors become persistently recipient of HIV DNA after injection with infected human cell lines.Folia Microbiol.43, 525–526 (1998).CrossRefGoogle Scholar
  160. Staunton D.E., Merluzzi V.J., Rothlein R., Barton S.D., Springer T.A.: A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses.Cell56, 849–853 (1989).PubMedCrossRefGoogle Scholar
  161. Svensson L.: Group C rotavirus requires sialic acid for erythrocyte and cell receptor binding.J. Virol.66, 5582–5585 (1992).PubMedGoogle Scholar
  162. Sagara J., Tsukita S., Yonemura S., Kawai A.: Cellular actin-binding ezrin-radixin-moesin (ERM) family proteins are incorporated into the rabies virion and closely associated with viral envelope proteins in the cell.Virology206, 485–494 (1994).CrossRefGoogle Scholar
  163. Sagara J., Kawai A.: Identification of heat shock protein 70 in the rabies virion.Virology190, 845–848 (1992).PubMedCrossRefGoogle Scholar
  164. Schelp C., Greiser-Wilke I., Wolf G., Beer M., Moennig V., Liess B.: Identification of cell membrane proteins linked to susceptibility to bovine viral diarrhoea virus infection.Arch. Virol.140, 1997–2009 (1995).PubMedCrossRefGoogle Scholar
  165. Schnittler H.-J., Mahner F., Drenckhahn D., Klenk H.-D., Feldmann H.: Replication of Marburg virus in human endothelial cells: a possible mechanism for the development of viral hemorrhagic disease.J. Clin. Invest.91, 1301–1309 (1993).PubMedGoogle Scholar
  166. Smith A.L., Tignor G.H.: Host cell receptors for two strains of Sindbis virus.Arch. Virol.66, 11–26 (1980).PubMedCrossRefGoogle Scholar
  167. Sommerfelt M.A., Weiss R.A.: Receptor interference groups of 20 retroviruses plating on human cells.Virology176, 58–69 (1990).PubMedCrossRefGoogle Scholar
  168. Srnka C.A., Tiemeyer M., Gilbert J.H., Moreland M., Schweingruber H., de Lappe B.W., James P.G., Gant T., Willough R.E., Yolken R.H., Nashed M.A., Abbas S.A., Laine R.A.: Cell surface ligands for rotavirus mouse intestinal glycolipids and synthetic carbohydrate analogs.Virology190, 794–805 (1992).PubMedCrossRefGoogle Scholar
  169. Svensson L.: Group C rotavirus requires sialic acid for erythrocyte and cell receptor binding.J. Virol.66, 5582–5585 (1992).PubMedGoogle Scholar
  170. Stehle T., Yan Y., Benjamin T.L., Harrison S.C.: Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment.Nature369, 160–163 (1994).PubMedCrossRefGoogle Scholar
  171. Tavakkol A., Burness A.T.H.: Evidence for a direct role for sialic acid in the attachment of encephalomyocarditis virus to human erythrocytes.Biochemistry29, 10684–10690 (1990).PubMedCrossRefGoogle Scholar
  172. Takeuchi Y., Vile R.G., Simpson G., O'Hara B., Collins M.K., Weiss R.A.: Feline leukemia virus subgroup B uses the same cell surface receptor as gibbon ape leukemia virus.J. Virol.66, 1219–1222 (1992).PubMedGoogle Scholar
  173. Tomassini J.E., Graham D., DeWitt C.M., Lineberger D.W., Rodkey J.A., Colonno R.J.: cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1.Proc. Nat. Acad. Sci. USA86, 4907–4911 (1989).PubMedCrossRefGoogle Scholar
  174. Tycko B., Maxfield F.R.: Rapid acidification of endocytic vesicles containing α-2-macroglobulin.Cell28, 643–651 (1982).PubMedCrossRefGoogle Scholar
  175. Ubol S., Griffin D.E.: Identification of a putative alphavirus receptor on mouse neural cells.J. Virol.65, 6913–6921 (1991).PubMedGoogle Scholar
  176. Varghese J.N., Laver W.G., Colman P.M.: Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution.Nature303, 35–40 (1983).PubMedCrossRefGoogle Scholar
  177. Varghese J.N., McKimm-Breschkin J.L., Caldwell J.B., Kortt A.A., Colman P.M.: The structure of the complex influenza virus neuraminidase and sialic acid, the viral receptor.Proteins14, 327–332 (1992).PubMedCrossRefGoogle Scholar
  178. Vlasak R., Lnytzes W., Leider J., Spaan W., Palese P.: The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity.J. Virol.62, 4686–4690 (1988).PubMedGoogle Scholar
  179. van Zeijl M., Johann S.V., Closs E., Cunningham J., Eddy R., Shows T.B., O'Hara B.: A human amphotropic retrovirus receptor is a second member of the gibbon ape leukemia virus receptor family.Proc. Nat. Acad. Sci. USA91, 1168–1172 (1994).PubMedCrossRefGoogle Scholar
  180. Vinuela E.: Molecular biology of African swine fever virus, pp. 31–49 in Y. Becker (Ed.):African Swine Fever. Martinus Nijhoff Publishing, Boston 1987.Google Scholar
  181. Wang K.S., Kuhn R.J., Strauss E.G., Ou S., Strauss J.H.: High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells.J. Virol.66, 4992–5001 (1992).PubMedGoogle Scholar
  182. Wang H., Kavanaugh M.P., North R.A., Kabat D.: Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter.Nature (London)352, 729–731 (1991).CrossRefGoogle Scholar
  183. Ward T., Pipkin P.A., Clarkson N.A., Stone D.M., Minor P.D., Almond J.W.: Decay-accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method.EMBO J.13, 5070–5074 (1994).PubMedGoogle Scholar
  184. Watanabe S.: The receptor and pathways for human cytomegalovirus entry.Nippon Rinsho56, 44–49 (1998).PubMedGoogle Scholar
  185. Watowich S.J., Skehel J.J., Wiley D.C.: Crystal structures of influenza virus hemagglutinin in complex with high-affinity receptor analogs.Structure2, 719–731 (1994).PubMedCrossRefGoogle Scholar
  186. Weiss R.A.: Cellular receptors and viral glycoproteins involved in retroviral entry, pp. 1–108 in J. Levy (Ed.):The Retroviridae. Plenum Press, New York 1993.Google Scholar
  187. Weiss R.A., Tailor C.S.: Retrovirus receptors.Cell82, 531–533 (1995).PubMedCrossRefGoogle Scholar
  188. Weis W.I., Brown J.H., Cusack S., Paulson J.C., Skehel J.J., Wiley D.C.: Structure of the influenza virus hæmagglutinin complexed with its receptor, sialic acid.Nature333, 426–431 (1988).PubMedCrossRefGoogle Scholar
  189. White J., Matlin K., Helenius A.: Cell fusion by Semliki forest, influenza, and vesicular stomatitis viruses.J. Cell. Biol.89, 674–679 (1981).PubMedCrossRefGoogle Scholar
  190. Wickham T.J., Mathias P., Cheresh D.A., Nemerow G.R.: Integrins αVβ3 and αVβ5 promote adenovirus internalization but not virus attachment.Cell73, 309–319 (1993).PubMedCrossRefGoogle Scholar
  191. Willett B.J., Hosie M.J., Jarrett O., Neil J.C.: Identification of a putative cellular receptor for feline immunodeficiency virus as the feline homologue of CD9.Immunology81, 228–233 (1994).PubMedGoogle Scholar
  192. Willett B., Hosie M., Shaw A., Neil J.: Inhibition of feline immunodeficiency virus infection by CD9 antibody operates after virus entry and is independent of virus entry and is independent of virus tropism.J. Gen. Virol.78, 611–618 (1997).PubMedGoogle Scholar
  193. Williams R.K., Jiang G.S., Holmes K.V.: Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins.Proc. Nat. Acad. Sci. USA88, 5533–5536 (1991).PubMedCrossRefGoogle Scholar
  194. Willoughby R.E., Yolken R.H., Schnaar R.L.: Rotaviruses specifically bind to the neutral glycosphingolipidJ. Virol.64, 4830–4835 (1990).PubMedGoogle Scholar
  195. Wilson C.A., Eiden M.V., Anderson W.B., Lehel C., Olah Z.: The dual-function hamster receptor for amphotropic murine leukemia virus (MuLV), 10A1 MuLV, and Gibbon ape leukemia virus is a phosphate symporter.J. Virol.69, 534–537 (1995).PubMedGoogle Scholar
  196. Wilson C.A., Farrell K.B., Eiden M.V.: Properties of a unique form of the murine amphotropic leukemia virus receptor expressed on hamster cells.J. Virol.68, 7697–7703 (1994).PubMedGoogle Scholar
  197. Wimmer E.:Cellular Receptors for Animal Viruses. Cold Springer Harbor Laboratory Press, Cold Spring Harbor 1994.Google Scholar
  198. Xu G., Suzuki T., Tahara H., Kiso M., Hasegawa A., Suzuki Y.: Specificity of sialyl-sugar chain mediated recognition by the hemagglutinin of human influenza B virus isolates.J. Biochem.115, 202–207 (1994).PubMedGoogle Scholar
  199. Xu R., Mohanty J.G., Crowell R.L.: Receptor proteins on newborn Balb/c mouse brain cells for coxsackievirus B3 are immunologically distinct from those on HeLa cells.Virus Res.35, 323–340 (1994).CrossRefGoogle Scholar
  200. Yasukawa M.: HHV-7 infection of CD4 gene transfected cells.Nippon Rinsho56, 56–61 (1998).PubMedGoogle Scholar
  201. Yeager C.L., Ashmun R.A., Williams R.K., Cardellichio C.B., Shapiro L.H., Look A.T., Holmes K.V.: Human amino peptidase N is a receptor for human coronavirus 229E.Nature (London)357, 420–422 (1992).CrossRefGoogle Scholar
  202. Yi, Y., Rana S., Turner J.D., Gaddis N., Collman R.G.: CXCR-4 is expressed by primary macrophages and supports CCR5-independent infection by dual-tropic but not T-tropic isolates of human immunodeficiency virus type 1.J. Virol.72, 772–777 (1998).PubMedGoogle Scholar
  203. Yokomori K., Lai M.M.: Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors.J. Virol.66, 6194–6199 (1992).PubMedGoogle Scholar
  204. Yoshikawa Y., Yamanouchi K., Takasu T., Rauf S., Ahmed A.: Structural homology between hemagglutinin (HA) of measles virus and the active site of long neurotoxins.Virus Genes5, 57–67 (1991).PubMedCrossRefGoogle Scholar
  205. Young J.A., Bates P., Varmus H.E.: Isolation of a chicken gene that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses.J. Virol.67, 1811–1814 (1993).PubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1999

Authors and Affiliations

  • L. Jindrák
    • 1
    • 2
  • L. Grubhoffer
    • 1
    • 2
  1. 1.Faculty of BiologyUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Institute of ParasitologyAcademy of Sciences of the Czech RepublicČeské Budějovice

Personalised recommendations