Molecular and Chemical Neuropathology

, Volume 33, Issue 1, pp 15–26 | Cite as

Ascorbate-stimulated lipid peroxidation and non-heme iron concentrations in Alzheimer disease

  • Anne C. Andorn
  • Robert S. Britton
  • Bruce R. Bacon
  • Rajesh N. Kalaria
Original Articles


Lipid peroxidation has been suggested to be a potential cause of neuronal damage in neurodegenerative diseases. Changes in several parameters of lipid peroxidation, including basal (unstimulated) lipid peroxidation, stimulated lipid peroxidation, tissue iron concentrations, and the concentrations of some oxygen radical scavengers, have been reported in neurodegenerative diseases. However, the in vitro interaction of oxygen radical scavengers and stimulated lipid peroxidation in neurodegenerative disease has been less wellstudied. The purpose of the present study was to determine the effects of oxygen radical scavengers on ascorbate-stimulated lipid peroxidation in Alzheimer disease (AD). We have found that some parameters of ascorbate-stimulated lipid peroxidation are altered in AD and that the effects of superoxide dismutase (SOD) on ascorbatestimulated lipid peroxidation are significantly different in AD as compared to aged.

Index Entries

Alzheimer disease lipid peroxidation iron brain antioxidants aging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambani L. M., Van Woert M. H., and Murphy S. (1975) Brain peroxidase and catalase in Parkinson disease.Arch. Neurol. 32, 114–118.PubMedGoogle Scholar
  2. Andorn A. C., Bacon B. R., Nguyen-Hunh A. T., Parlato S. J., and Stitts J. A. (1988) Guanyl nucleotide interactions with dopaminergic binding sites labeled by [3H]spiroperidol in human caudate and putamen: guanyl nucleotides enhance ascorbate-induced lipid peroxidation and cause an apparent loss of high affinity binding sites.Mol. Pharmacol. 33, 155–162.PubMedGoogle Scholar
  3. Andorn A. C., Britton R. S., and Bacon B. R. (1996) Ascorbate-stimulated lipid peroxidation in human brain is dependent on iron but not on hydroxyl radical.J. Neurochem. 67, 717–722.PubMedGoogle Scholar
  4. Balazs L. and Leon M. (1994) Evidence of an oxidative challenge in the Alzheimer’s brain.Neurochem. Res. 19, 1131–1137.PubMedCrossRefGoogle Scholar
  5. Clément M. and Bourre J. M. (1990) Alteration of α-tocopherol content in the developing and aging peripheral nervous system: persistence of high correlations with total and specific (n-6) polyunsaturated fatty acids.J. Neurochem. 54, 2110–2217.PubMedCrossRefGoogle Scholar
  6. Connor J. R., Menzie S. L., St. Martin S. M., and Mufson E. J. (1992a) A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains.J. Neurosci. Res. 31, 75–83.PubMedCrossRefGoogle Scholar
  7. Connor J. R., Snyder B. S., Beard J. L., Fine R. E., and Mufson E. J. (1992b) The regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease.J. Neurosci. Res. 31, 327–335.PubMedCrossRefGoogle Scholar
  8. Connor J. R., Snyder B. S., Arosio P., Loeffler D. A., and LeWitt P. L. (1995) A quantitative analysis of isoferritins in select regions of aged, Parkinsonian, and Alzheimer’s diseased brains.J. Neurochem. 65, 717–724.PubMedCrossRefGoogle Scholar
  9. Dexter D. T., Carter C. J., Wells F. R., Javoy-Agid F., Agid Y., Lees A., Jenner P., and Marsden C. D. (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease.J. Neurochem. 52, 381–389.PubMedCrossRefGoogle Scholar
  10. Dexter D. T., Jenner P., Schapira A. H. V., and Marsden C. D. (1992) Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative disease affecting the basal ganglia.Ann. Neurol. 32, S94-S100.PubMedCrossRefGoogle Scholar
  11. Ginsberg L., Atack J. R., Rapoport S. I., and Gershfeld N. L. (1983) Evidence for a membrane lipid defect in Alzheimer disease.Mol. Chem. Neuropathol. 19, 37–46.CrossRefGoogle Scholar
  12. Griffiths P. D. and Crossnian A. R. (1993) Distribution of iron in the basal ganglia and neocortex in postmortem tissue in Parkinson’s disease and Alzheimer’s disease.Dementia 4, 61–65.PubMedCrossRefGoogle Scholar
  13. Gsell W., Conrad R., Hickethier M., Sofic E., Frölich L., Wichart I., Jellinger K., Moll G., Ransmayr G., Beckmann H., and Riederer P. (1995) Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type.J. Neurochem. 64, 1216–1223.PubMedCrossRefGoogle Scholar
  14. Hajimohammadreza I. and Brammer M. (1990) Brain membrane fluidity and lipid peroxidation in Alzheimer’s disease.Neurosci. Lett. 112, 333–337.PubMedCrossRefGoogle Scholar
  15. Hallgren B. and Sourander P. (1960) The non-haemin iron in the cerebral cortex in Alzheimer’s Disease.J. Neurochem. 5, 307–310.PubMedCrossRefGoogle Scholar
  16. Hirano A. and Zimmerman H. M. (1962) Alzheimer’s neurofibrillary changes—a topographic study.Arch. Neurol. 7, 73–88.Google Scholar
  17. Khachaturian Z. S. (1985) Diagnosis of Alzheimer’s disease.Arch. Neurol. 42, 1097–1105.PubMedGoogle Scholar
  18. Kish S. J., Morito C. L. H., and Hornykiewicz O. (1986) Brain glutathione peroxidase in neurodegenerative disorders.Neurochem. Pathol. 4, 23–28.PubMedGoogle Scholar
  19. Kohn H. I. and Liversedge M. (1944) On a new aerobic metabolite whose production by brain is inhibited by apomorphine, emetine, ergotamine, epinephrine and menadione.J. Pharmacol. Exp. Ther. 82, 292–300.Google Scholar
  20. Loeffler D. A., Connor J. R., Juneau P. L., Snyder B. S., Kanaley L., DeMaggio A. J., Nguyen H., Brickman C. M., and LeWitt P. A. (1995) Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions.J. Neurochem. 65, 710–716.PubMedCrossRefGoogle Scholar
  21. Lovell M. A., Ehmann W. D., Butler S. M., and Markesbery W. R. (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease.Neurology 45, 1594–1601.PubMedGoogle Scholar
  22. Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurements with the Folin phenol reagent.J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  23. Nagy I. Z. and Nagy K. (1980) On the role of cross-linking of cellular proteins in aging.Mech. Aging Dev. 14 245–251.PubMedCrossRefGoogle Scholar
  24. Palmer A. M. and Burns M. A. (1994) Selective increase in lipid peroxidation in the inferior temporal cortex in Alzheimer’s disease.Brain Res 645, 338–342.PubMedCrossRefGoogle Scholar
  25. Perry T. L., Young V. W., Bergeron C., Hansen S., and Jones K. (1987) Amino acids, glutathione, and glutathione transferase activity in the brains of patients with Alzheimer’s disease.Ann. Neurol. 21, 331–336.PubMedCrossRefGoogle Scholar
  26. Riederer P., Sofic E., Rausch W.-D., Schmidt B., Reynolds G. P., Jellinger K., and Youdim M. B. H. (1989) Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains.J. Neurochem. 52, 515–520.PubMedCrossRefGoogle Scholar
  27. Sofic E., Riederer P., Heinsen H., Beckmann H., Reynolds G. P., Hebenstreit G. and Youdim M. B. H. (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain.J. Neural, Transm. 74, 199–205.CrossRefGoogle Scholar
  28. Söderberg M., Edlund C., Alafuzoff I., Kristensson K., and Dallner G. (1992) Lipid composition in different regions of the brain in Alzheimer’s disease/senile dementia of Alzheimer’s type.J. Neurochem. 59, 1646–1653.PubMedCrossRefGoogle Scholar
  29. Subbarao K. V., Richardson J. S. and Ang L. C. (1990) Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro.J. Neurochem. 55, 342–345.PubMedCrossRefGoogle Scholar
  30. Torrance J. D. and Bothwell T. H. (1980) Tissue iron stores, inIron (Cook J. D., ed.), Churchill-Livingstone, New York, pp. 90–115.Google Scholar
  31. Willmore L. J. and Rubin J. J. (1982) Formation of malonaldehyde and focal brain edema induced by subpial injection of FeCl2 in rat isocortex.Brain Res. 246, 113–119.PubMedCrossRefGoogle Scholar
  32. Zhou Y. and Richardson J. S. (1995) Free radical formation in autopsy samples of Alzheimer and control cortex.Neurosci. Lett. 195, 89–92.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  • Anne C. Andorn
    • 1
    • 3
  • Robert S. Britton
    • 2
  • Bruce R. Bacon
    • 2
  • Rajesh N. Kalaria
    • 4
  1. 1.Department of PsychiatrySaint Louis University School of MedicineSt. Louis
  2. 2.Division of Gastroenterology and Hepatology, Department of Internal MedicineSaint Louis University School of MedicineSt. Louis
  3. 3.Psychiatry ServiceSt. Louis VAMCSt. Louis
  4. 4.Department of Neurology, Case Western ReserveUniversity School of MedicineCleveland

Personalised recommendations