Folia Microbiologica

, Volume 43, Issue 1, pp 59–62 | Cite as

Citric acid production from sugar cane molasses by 2-deoxyglucose-resistant mutant strain ofAspergillus niger

  • S. Parvez
  • M. I. Rajoka
  • M. N. Ahmed
  • F. Latif
  • R. Shahid
  • K. A. Malik
Papers

Abstract

Citric acid production from sugar cane molasses byAspergillus niger NIAB 280 was studied in a batch cultivation process. A maximum of 90 g/L total sugar was utilized in citric acid production medium. From the parental strainA. niger, mutant strains showing resistance to 2-deoxyglucose in Vogal's medium containing molasses as a carbon source were induced by γ-irradiation. Among the new series of mutant strains, strain RP7 produced 120 g/L while the parental strain produced 80 g/L citric acid (1.5-fold improvement) from 150 g/L of molasses sugars. The period of citric acid production was shortened from 10 d for the wild-type strain to 6–7 d for the mutant strain. The efficiency of substrate uptake rate with respect to total volume substrate consumption rate,Qs (g per L per h) and specific substrate consumption rate,qs (g substrate per g cells per h) revealed that the mutant grew faster than its parent. This indicated that the selected mutant is insensitive to catabolite repression by higher concentrations of sugars for citric acid production. With respect to the product yield coefficient (Yp/x), volume productivity (Qp) and specific product yields (qp), the mutant strain is significantly (p≤0.05) improved over the parental strain.

References

  1. Aiba S., Matsuoka M.: Overproduction of microbial products, Symposium FEMS no. 13 (V. Krumphanzl, B. Sikyta, Z. Vaněk, Eds.), p. 263. Academic Press, London 1982.Google Scholar
  2. Allen K.E., McNally M.T., Lowendorf H.S., Slayman C.W., Free S.J.: Deoxyglucose resistant mutants ofNeurospora crassa: isolation, mapping and biochemical characterization.J. Bacteriol. 171, 53–58 (1989).PubMedGoogle Scholar
  3. Das A., Roy P.:Advances in Biotechnology, Vol. 1 (M. Moc-Young, Ed.), pp. 51–55. Pergamon Press, Toronto 1981.Google Scholar
  4. Fiedurek J., Szczodrak J., Iiczuk Z.: Citric acid synthesis inAspergillus niger mutants resistant to 2-deoxy-d-glucose.Acta Microbiol. Polon. 36, 303–307 (1987).Google Scholar
  5. Kapoor K.K., Chaudhary K., Tauro P.: p. 709 inPresscott's and Dunn's Industrial Microbiology, 4th ed. (G. Reed, Ed.) AVI, Westport (CT) 1982.Google Scholar
  6. Kirimura K., Lee S.P., Kawabe S., Usami S.: Haploid recombinants formed as sectors in the interaspecific fusants ofAspergillus niger producing citric acid.J. Ferment. Technol. 65, 557–562 (1987).CrossRefGoogle Scholar
  7. Kirimura K., Nakajima I., Lee S.P., Kawabe S., Usami S.: Citric acid production by the diploid strains ofAspergillus niger obtained by protoplast fusion.Appl. Microbiol. Biotechnol. 27, 504–506 (1988).Google Scholar
  8. Kirimura K., Sarangbin S., Rugsaseel S.: Citric acid production by 2-deoxyglucose-resistant mutant strains ofAspergillus niger.Appl. Microbiol. Biotechnol. 36, 573–577 (1992).CrossRefGoogle Scholar
  9. Miller G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal. Chem. 31, 426–428 (1959).CrossRefGoogle Scholar
  10. Montenecourt B.S., Eveleigh D.E.: Selective screening methods for the isolation of high yielding cellulase mutants ofTrichoderma reesei, pp. 289–301 in R.D. Brown Jr., L. Jurasek (Eds):Hydrolysis of Cellulose: Mechanism of Enzymatic and Acid Catalysis. American Chemical Society, Washington 1979.Google Scholar
  11. Moore D.: Effects of hexose analogues on fungi: Mechanisms of inhibition to resistance.New Phytol. 87, 487–515 (1981).CrossRefGoogle Scholar
  12. Moore D., Devadatham M.S.: Sugar transport inCoprinus cinereus.Biochim. Biophys. Acta 550, 515–526 (1979).PubMedCrossRefGoogle Scholar
  13. Novak S.D., Amore T., Russell I., Stewart G.G.: Sugar uptake in a 2-deoxy-d-glucose resistant mutant ofSaccharomyces cerevisiae.J. Ind. Microbiol. 7, 35–40 (1991).CrossRefGoogle Scholar
  14. Rohr M., Kubicek C.P., Kominek J.: Citric acid, pp. 419–454 in H.J. Rehm, G. Reed (Eds):Biotechnology, Vol. 3. Verlag Chemie, Weinheim 1983.Google Scholar
  15. Tani Y., Fuji A., Nishise H.: Production of raw cassava starch-digestive glucoamylase by a 2-deoxyglucose-resistant mutants ofRhizopus sp.J. Ferment. Technol. 66, 545–551 (1988).CrossRefGoogle Scholar
  16. Van Uden N., Cabeca-Silva C., Medeira-Lopes A., Spencer-Martins I.: Selective isolation of derepressed mutants of α-amylase yeast by the use of 2-deoxyglucose.Biotechnol. Bioeng. 22, 651–654 (1980).CrossRefGoogle Scholar

Copyright information

© Folia Microbiologica 1998

Authors and Affiliations

  • S. Parvez
    • 1
  • M. I. Rajoka
    • 1
  • M. N. Ahmed
    • 1
  • F. Latif
    • 1
  • R. Shahid
    • 1
  • K. A. Malik
    • 1
  1. 1.National Institute for Biotechnology and Genetics Engineering577FaisalabadPakistan

Personalised recommendations