Molecular and Chemical Neuropathology

, Volume 20, Issue 2, pp 147–162 | Cite as

The use of salicylate hydroxylation to detect hydroxyl radical generation in ischemic and traumatic brain injury

Reversal by Tirilazad Mesylate (U-74006F)
  • John S. Althaus
  • Paula K. Andrus
  • Carl M. Williams
  • Philip F. VonVoigtlander
  • Alexander R. Cazers
  • Edward D. Hall
Original Articles


Oxygen free radicals have been implicated as a causal factor in posttraumatic neuronal cell loss following cerebral ischemia and head injury. The conversion of salicylate to dihydroxybenzoic acid (DHBA) in vivo was employed to study the formation of hydroxyl radical (·OH) following central nervous system (CNS) injury. Bilateral carotid occlusion (BCO) in gerbils and concussive head trauma in mice were selected as models of brain injury. The lipid peroxidation inhibitor, tirilazad mesylate (U-74006F), was tested for its ability to attenuate hydroxyl radical formation in these models. In addition, U-74006F was studied as a scavenger of hydroxyl radical in an in vitro assay based on the Fenton reaction.

For in vivo experimentation, hydroxyl radical formation was expressed as the ratio of DHBA to salicylate (DHBA/SAL) measured in brain. In the BCO model, hydroxyl radical formation increased in whole brain with 10 min of occlusion followed by 1 min of reperfusion. DHBA/SAL was also found to increase in the mouse head injury model at 1 h postinjury. In both models, U-74006F (1 or 10 mg/kg) blocked the increase in DHBA/SAL following injury. In vitro, reaction of U-74006F with hydroxyl radical gave a product with a mol wt that was 16 greater than U-74006F, indicative of hydroxyl radical scavenging. We speculate that U-74006F may function by blocking oxyradical-dependent cell damage, and thereby maintaining free iron (which catalyzes hydroxyl radical formation) concentrations at normal levels.

Index Entries

Tirilazad mesylate hydroxyl radical ischemic brain injury traumatic brain injury radical scavenger salicylate hydroxylation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beck T. and Bielenberg G. H. (1990) Failure of the lipid peroxidation inhibitor U-74006F to improve neurological outcome after transient forebrain ischemia in the rat.Brain Res. 532, 336–338.PubMedCrossRefGoogle Scholar
  2. Beck T. and Bielenberg G. W. (1991) The effects of two 21-aminosteroids on overt infarct size 48 hours after middle cerebral artery occlusion in the rat.Brain Res. 560, 159–162.PubMedCrossRefGoogle Scholar
  3. Braughler J. M. and Pregenzer J. F. (1989) The 21-aminosteroid inhibitors of lipid peroxidation: reactions with lipid peroxyl and phenoxyl radicals.J. Free Rad. Biol. Med. 7, 125–130.CrossRefGoogle Scholar
  4. Braughler J. M., Duncan L. A., and Chase R. L. (1986) The involvement of iron in lipid peroxidation.J. Biol. Chem. 261, 10,282–10,289.Google Scholar
  5. Cao W., Carney J. M., Duchon A., Floyd R. A., and Chevion A. (1988) Oxygen free radical involvement in ischemia and reperfusion injury to brain.Neurosci. Lett. 88, 233–238.PubMedCrossRefGoogle Scholar
  6. Chiueh C. C., Huang S. J., and Murphy D. L. (1992) Enhanced hydroxyl radical generation by 2′-methyl analog of MPTP: suppression by clorgyline and deprenyl.Synapse 1116, 183–191.Google Scholar
  7. Floyd R. A. and Carney J. M. (1991) Age influence on oxidative events during brain ischemia/reperfusion.Arch. Gerontol. Geriatr. 12, 155–177.PubMedCrossRefGoogle Scholar
  8. Floyd R. A., Henderson R., Watson J. J., and Wong P. K. (1986) Use of salicylate with high pressure liquid chromatography and electrochemical detection (LCED) as a sensitive measure of hydroxyl free radicals in adriamycin treated rats.J. Free Rad. Biol. Med. 2, 13–18.CrossRefGoogle Scholar
  9. Fujii T., Hiramoto Y., Terao J., and Fukuzawa K. (1991) Site-specific mechanism of initiation by a-tocopherol of lipid peroxide-dependent lipid peroxidation in charged micelles.Arch. Biochem. Biophys. 284, 120–126.PubMedCrossRefGoogle Scholar
  10. Gelvan D. and Saltman P. (1991) Small chelators and the nature of the metal ion in site-specificity of ·OH damage, inOxidative Damage & Repair: Chemical, Biological and Medical Aspects (Davies K. J. A., ed.), pp. 825–830, Pergamon, New York.Google Scholar
  11. Giovanni A., Hastings T. G., Liang L. P., and Zigmond M. J. (1992) Methamphetamine increases hydroxyl radicals in rat striatum: role of dopamine.Soc. Neurosc. Abstr. 18, 1444.Google Scholar
  12. Grootveld M. and Halliwell B. (1986) Aromatic hydroxylation as a potential measure of hydroxyl-radical formationin vivo.Biochem. J. 237, 499–504.PubMedGoogle Scholar
  13. Hall E. D. (1985) High-dose glucocorticoid treatment improves neurological recovery in head-injured mice.J. Neurosurg. 62, 882–887.PubMedGoogle Scholar
  14. Hall E. D. and Pazara K. E. (1989) Effects of novel 21-aminosteroid antioxidants on post-ischemic neuronal degeneration, inCerebrovascular Diseases (Ginsberg M. D. and Dietrich W. D., eds.), pp. 387–391, Raven, New York.Google Scholar
  15. Hall E. D., Yonkers P. A., McCall J. M., and Braughler J. M. (1988) Effects of the 21-aminosteroid U-74006F on experimental head injury in mice.J. Neurosurg. 68, 456–461.PubMedCrossRefGoogle Scholar
  16. Hall E. D., Braughler J. M., and McCall J. M. (1990) Role of oxygen radicals in stroke: effect of the 21-aminosteroids (lazaroids), a novel class of antioxidants, inCurrent and Future Trends in Anticonvulsant, Anxiety, and Stroke Therapy (Meldrum B. S. and Williams M., eds.), pp. 351–362, Wiley-Liss, New York.Google Scholar
  17. Hall E. D., Andrus P. K., Althaus J. S., and VonVoigtlander P. F. (1993a) Hydroxyl radical production and lipid peroxidation parallels selective post-ischemic vulnerability in gerbil brain.J. Neurosc. Res. 34, 107–112.CrossRefGoogle Scholar
  18. Hall E. D., Andrus P. K., and Yonkers P. A. (1993b) Brain hydroxyl radical generation in acute experimental head injury.J. Neurochem. 60, 588–594.PubMedCrossRefGoogle Scholar
  19. Halliwell B. (1992) Reactive oxygen species and the central nervous system.J. Neurochem. 59, 1609–1623.PubMedCrossRefGoogle Scholar
  20. Haraldseth O., GrØnas T., and Unsgard G. (1991) Quicker metabolic recovery after forebrain ischemia in rats treated with the antioxidant U-74006F.Stroke 22, 1188–1192.PubMedGoogle Scholar
  21. Haseloff R. F., Blasig I. E., Meffert H., and Ebert B. (1990) Hydroxyl radical scavenging and antipsoriatic activity of benzoic acid derivatives.Free Rad. Biol. Med. 9, 111–115.PubMedCrossRefGoogle Scholar
  22. Ingold K. U., Bowry V. W., Stocker R., and Walling C. (1993) Autoxidation of lipids and antioxidation by α-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: Unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein.Proc. Natl. Acad. Sci. USA 90, 45–49.PubMedCrossRefGoogle Scholar
  23. Janero D. R. and Burghardt B. (1989) Prevention of oxidative injury to cardiac phospholipid by membrane-active “stabilizing agents.” Res.Comm. Chem. Pathol. Pharmacol. 63, 163–173.Google Scholar
  24. Kobayashi A., Watanabe H., Ozawa K., Hayashi H., and Yamazaki N. (1989) Oxygen-derived free radicals related injury in the heart during ischemia and reperfusion.Jpn. Circ. J. 53, 1122–1131.PubMedGoogle Scholar
  25. Kontos H.A. and Povlishock J. T. (1986) Oxygen radicals in brain injury.CNS Trauma 3, 257–263.Google Scholar
  26. Lesiuk H., Sutherland G., Peeling J., Butler K., and Saunders J. (1991) Effect of U-74006F on forebrain ischemia in rats.Stroke 22, 896–901.PubMedGoogle Scholar
  27. McIntosh T. K., Thomas M., Smith D., and Banbury M. (1992) The novel 21-aminosteroid U-74006F attenuates cerebral edema and improves survival after brain injury in the rat.J. Neurotrauma 9, 33–46.PubMedCrossRefGoogle Scholar
  28. Moorhouse C. P., Halliwell B., Grootveld M., and Gutteridge J. M. C. (1985) Cobalt (II) ion as a promoter of hydroxyl radical and possible ‘cryptohydroxyl’ radical formation under physiological conditions. Differential effects of hydroxyl radical scavengers.Biochim. Biophys. Acta. 843, 261–268.PubMedGoogle Scholar
  29. Pahlmark K., Smith M. L., and Siesjö B. K. (1991) Failure of U-74006F to ameliorate neuronal damage due to transient ischemia or hypoglycemia.J. Cerebr. Blood Flow Metab. 2, S138.Google Scholar
  30. Perkins W.J., Lessor N., Downes H., and Riker W. K. (1992) Effect of a 21-aminosteroid on histopathologic outcome after forebrain ischemia in the rat.FASEB J. 5, A1279.Google Scholar
  31. Piantadosi C. A. and Tatro L. G. (1990) Regional H2O2 concentration in rat brain after hyperoxic convulsions.J. Appl. Physiol. 69, 1761–1766.PubMedGoogle Scholar
  32. Powell S. R. and Hall R. (1990) Use of salicylate as a probe for ·OH formation in isolated ischemic rat hearts.Free Rad. Biol. Med. 9, 133–141.PubMedCrossRefGoogle Scholar
  33. Sakamoto A., Ohnishi S. T., Ohnishi T., and Ogawa R. (1991) Relationship between free radical production and lipid peroxidation during ischemiareperfusion injury in rat brain.Brain Res. 554, 186–192.PubMedCrossRefGoogle Scholar
  34. Simpson J. A., Cheeseman K. H., Smith S. E., and Dean R. T. (1988) Free-radical generation by copper ions and hydrogen peroxide.Biochem. J. 254, 519–523.PubMedGoogle Scholar
  35. Snedecor G. W. and Cochran W. G. (1967)Statistical Methods, 6th ed., The Iowa State University Press, Ames, LA.Google Scholar
  36. Spina M. B. and Cohen G. (1989) Dopamine turnover and glutathione oxidation: Implications for parkinson disease.Proc. Natl. Acad. Sci. USA 86, 1398–1400.PubMedCrossRefGoogle Scholar
  37. Sutton H. C. (1985) Efficiency of chelated iron compounds as catalysts for the Haber-Weiss reaction.J. Free Rad. Biol. Med. 1, 195–202.CrossRefGoogle Scholar
  38. Tosaki A., Blasig I. E., Pali T., and Ebert B. (1990) Heart protection and radical trapping by DMPO during reperfusion in isolated working rat hearts.Free Rad. Biol. Med. 8, 363–372.PubMedCrossRefGoogle Scholar
  39. Yoshida K., Terao J., Suzuki T., and Takama K. (1991) Inhibitory effect of phosphatidylserine on iron-dependent lipid peroxidation.Biochem. Biophys. Res. Comm. 179, 1077–1081.PubMedCrossRefGoogle Scholar
  40. Young W., Wojak J. C., and DeCrescito V. (1988) 21-aminosteroid reduces ion shifts and edema in the rat middle cerebral artery occlusion model of regional ischemia.Stroke 19, 1013–1019.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • John S. Althaus
    • 1
  • Paula K. Andrus
    • 1
  • Carl M. Williams
    • 2
  • Philip F. VonVoigtlander
    • 1
  • Alexander R. Cazers
    • 1
  • Edward D. Hall
    • 1
  1. 1.CNS Diseases Research, 7521-209-5The Upjohn CompanyKalamazoo
  2. 2.School of MedicineUniversity of MarylandBaltimore

Personalised recommendations