Molecular and chemical neuropathology

, Volume 21, Issue 2–3, pp 329–336 | Cite as

Inhibition of angiogenesis as a strategy for tumor growth control

  • William F. Herblin
  • Janet L. Gross


Angiogenesis is a complex sequence of events leading to the formation of new capillaries. Although essential to maturation and wound healing, most angiogenesis in the adult is associated with pathological events, such as the development of solid tumors. One approach to the inhibition of angiogenesis is the antagonism of basic fibroblast growth factor, a major angiogenic protein. Evidence is reviewed to suggest that inhibiting angiogenesis results in the suppression of tumor growth.

Index Entries

Angiogenesis tumor growth capillaries vascularization endothelial cells basic fibroblast growth factor gliomas melanomas suramin platelet factor 4 minocycline thrombospondin fumagillin laminin herbimycin A d-penicillamine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bagavandoss P. and Wilks J. W. (1990) Specific inhibition of endothelial cell proliferation by thrombospondin.Biochem. Biophys. Res. Commun. 170, 867–872.CrossRefGoogle Scholar
  2. Baird A. and Klagsburn M. (1991) The fibroblast growth factor family.Cancer Cells 3, 239–243.PubMedGoogle Scholar
  3. Brem S. S., Zagzag D., Tsanaclis A. C., Gately S., Elkouby M., and Brien S. (1990) Inhibition of angiogenesis and tumor growth in the brain.Am. J. Pathol. 137, 1121–1142.PubMedPubMedCentralGoogle Scholar
  4. Folkman J. (1971) Tumor angiogenesis: therapeutic implications.New Engl. J. Med. 285, 1182–1186.CrossRefGoogle Scholar
  5. Folkman J. (1972) Anti-angiogenesis: new concept for therapy of solid tumors.Ann. Surg. 175, 409–416.CrossRefGoogle Scholar
  6. Folkman J. and Klagsbrun M. (1987) Angiogenic factors.Science 235, 442–447.CrossRefGoogle Scholar
  7. Folkman J. (1990a) What is the evidence that tumors are angiogenesis-dependent.J. Natl. Cancer Inst. 82, 4–6.CrossRefGoogle Scholar
  8. Folkman J. L. (1990b) The angiogenic activity of FGF and its possible clinical applications, inGrowth Factors: from Genes to Clinical Application (Sara, V. R., et al., eds.), Raven, New York.Google Scholar
  9. Gross J. L., Morrison R. S., Eidsvoog K., Herblin W. F., Kornblith P. L., and Dexter D. L. (1990) Basic fibroblast growth factor: a potential autocrine regulator of human glioma cell growth.J. Neurosci. Res. 27, 689–696.CrossRefGoogle Scholar
  10. Gross J. L., Hertel D., Herblin W. F., Neville M. and Brem S. S. (1991) Inhibition of basic fibroblast growth factor-induced angiogenesis and glioma tumor growth in vivo in copper depleted rats.Proc. Amer. Assoc. Cancer Res. 32, 57.Google Scholar
  11. Gross J. L., Herblin W. F., Eidsvoog K., Horlick R., and Brem S. S. (in press) Tumor growth regulation by modulation of basic fibroblast growth factor, inAngiogenesis, (Steiner R. and Langer R., eds.), Karger, Basel.Google Scholar
  12. Herblin W. F. and Gross J. L. (in press) High affinity sites for basic fibroblast growth factor in solid tumors are associated with the vasculature, inAngiogenesis, (Steiner R. and Langer, R., eds.) Karger, Basel.Google Scholar
  13. Hori A., Sasada R., Matsutani E., Naito K., Sakura Y., Fujita T., and Kozai Y. (1991) Suppression of solid tumor growth by immunoneutralizing monoclonal antibody against human basic fibroblast growth factor.Cancer Res. 51, 6180–6184.PubMedGoogle Scholar
  14. Ingber D., Fujita T., Kishimoto S., Sudo K., Kanamaru T., Brem H., and Folkman J. (1990) Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumor growth.Nature 348, 555–557.CrossRefGoogle Scholar
  15. La Rocca R. V., Stein C. A., Danesi R. and Myers C. E. (1990) Suramin, a novel antitumor compound.J. Steroid Biochem. Mol. Biol. 37, 893–898.CrossRefGoogle Scholar
  16. Maione T. E., Gray G. S., Petro J., Hunt A. J., Donner A. L., Baure S. I., Carson H. F., and Sharpe R. J. (1990) Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides.Science 247, 77–79.CrossRefGoogle Scholar
  17. Maione T. E., Gray G. S., Hunt A. J., and Sharpe R. J. (1991) Inhibition of tumor growth in mice by an analogue of platelet factor 4 that lacks affinity for heparin and retains potent angiostatic activity.Cancer Res. 51, 2077–2083.PubMedGoogle Scholar
  18. Missirlis E., Karakiulakis G., and Maragoudakis M. E. (1990) Antitumor effect of GPA1734 in rat Walker carcinoma.Invest. New Drugs 8, 145–147.CrossRefGoogle Scholar
  19. Moses M. A. and Langer R. (1991) Inhibitors of angiogenesis.BioTechnology 9, 630–634.PubMedGoogle Scholar
  20. Oikawa T., Hirotani K., Shimamura M., Ashino-Fuse H., and Iwaguchi T. (1989) Powerful antiangiogenic activity of herbimycin A.J. Antibiotics 42, 1202–1204.CrossRefGoogle Scholar
  21. Rifkin D. B. and Moscatelli D. (1989) Recent developments in the cell biology of basic fibroblast growth factor.J. Cell Biol. 109, 1–6.CrossRefGoogle Scholar
  22. Sakamoto N., Iwahana M., Tanaka N. G., and Osada Y. (1991) Inhibition of angiogenesis and tumor growth by a synthetic laminin peptide, CDPGYIGSR-NH2.Cancer Res. 51, 903–906.PubMedGoogle Scholar
  23. Sato Y., Abe M., and takaki R. (1990) Platelet factor 4 blocks the binding of basic fibroblast growth factor to the receptor and inhibits the spontaneous migration of vascular endothelial cells.Biochem. Biophys. Res. Commun. 172, 595–600.CrossRefGoogle Scholar
  24. Shibata K. and Sataumabayashi S. (1986) Chemical modification of herbimycin A.J. Antibiotics 39, 415–423.CrossRefGoogle Scholar
  25. Takahashi J. A., Fukumoto M., Kozai Y., Ito N., Oda Y., Kikuchi H., and Hatanaka M. (1991) Inhibition of cell growth and tumorigenesis of human glioblastoma cells by a neutralizing antibody against human fibroblast growth factor.FEBS Lett. 288, 65–71.CrossRefGoogle Scholar
  26. Tamargo R. J., Bok R. A., and Brem H. (1991) Angiogenesis inhibition by minocylineCancer Res. 51, 672–675.PubMedGoogle Scholar
  27. Taylor S. and Folkman J. (1982) Protamine is an inhibitor of angiogenesis.Nature 297, 307–312.CrossRefGoogle Scholar
  28. Vlodavsky I., Fuks Z., Ishai-Michaeli R., Bashkin P., Levi E., Korner G., Bar-Shavit R., and Klagsbrun M. (1991) Extracellular matrix-resident basic fibroblast growth factor: Implication for the control of angiogenesis.J. Cell Biochem. 45, 167–176.CrossRefGoogle Scholar
  29. Wellstein A., Zugmaier G., Califano J. A., III, Paik S., and Lippman M. E. (1991) Tumor growth dependent on Kaposi’s sarcoma-derived fibroblast growth factor inhibited by pentosan polysulfate.J. Natl. Cancer Inst. 83, 716–720.CrossRefGoogle Scholar
  30. Woltering E. A., Barrie R., O’Dorisio T. M., Arce D., Ure T., Cramer A., Holmes D., Robertson J., and Fassler J. (1991) Somatostatin analogues inhibit angiogenesis in the chick chorioallantoic membrane.J. Surg. Res. 50, 245–251.CrossRefGoogle Scholar
  31. Yamashita T., Sakai M., Kawai Y., Aono M., and Takahashi K. (1989) A new activity of herbimycin A: Inhibition of angiogenesis.J. Antibiotics 42, 1015–1017.CrossRefGoogle Scholar
  32. Zalatnai A. and Schally A. V. (1989) Treatment of N-nitrosobis (2-oxopropyl) amine-induced pancreatic cancer in Syrian golden hamsters with D-Trp-6-LH-RH and somatostatin analogue RC-160 microcapsules.Cancer Res. 49, 1810–1815.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • William F. Herblin
    • 1
  • Janet L. Gross
    • 1
  1. 1.Cardiovascular and Cancer ResearchThe Du Pont Merck Pharmaceutical CompanyWilmington

Personalised recommendations