Molecular and chemical neuropathology

, Volume 21, Issue 2–3, pp 311–327 | Cite as

The identification of glioblastoma-associatied, fucose-containing glycoproteins induced by retinoic acid

  • David L. VanderMeulen
  • V. V. T. S. Prasad
  • Joseph R. Moskal


We have used a tumorigenic glioblastoma cell line, SNB-19, as a model system to identify fucose-containing glycoprotein candidates for tumor suppressor function. Glycoproteins were analyzed after treatment with a variety of chemical differentiating agents by two-dimensional SDS-PAGE, followed by electroblotting and visualization using the fucose-specific lectin,Ulex europeaus I. Approximately 25 fucose-containing glycoproteins (FUCGLAPs) were routinely visualized in control extracts using 60–70 μg of protein per gel and staining with Vectastain ABC kits. Retinoic acid induced the most marked change in FUCGLAP expression, causing a fivelold increase in one FUCGLAP (Mr=125 kDa,pI=6.6) Neither butyric acid, dibutyryl cAMP, nor combinations of these compounds gave a similar result. Using this model system and analytical approach, it should be possible to identify, isolate, and evaluate glycoprotein oligosaccharides for their tumor modulating capability.

Index Entries

Fucoproteins glioblastoma retinoic acid glycoproteins cAMP butyric acid oligosaccharides cell-surface glycoconjugates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amos B. and Lotan R. (1990) Modulation of lysosomal-associated membrane glycoproteins during retinoic acid-induced embryonic carcinoma cell differentiation.J. Biol. Chem. 265, 19192–19198.PubMedGoogle Scholar
  2. Amos B., Deutsch V., and Lotan R. (1990a) Modulation by all-trans retinoic acid of glycoprotein glycosylation in murine melanoma cells: enhancement of fucosyl- and galactosyltransferase activities.Cancer Biochem. Biophys. 11, 31–43.PubMedGoogle Scholar
  3. Amos B., Lotan D., and Lotan R. (1990b) Increased fucosylation of high molecular weight glycoproteins accompanies retinoic acid induced differentiation of F-9 embryonal carcinoma cells.Int. J. Cancer 46, 86–94.CrossRefGoogle Scholar
  4. Arch R., Wirth K., Hofmann M., Ponta H., Matzku S., Herrlich P., and Zoller M. (1992) Participation in normal immune response of a metastasis-inducing splice variant of CD44.Science 257, 682–685.CrossRefGoogle Scholar
  5. Avner P., Arnaud D., Blaineau C., and LePendu J. (1985) Developmentally regulated cell surface structures on mouse and human embryonal carcinoma cell lines.Cell Diff.17, 13–20.CrossRefGoogle Scholar
  6. Badenoch-Jones P., Claudianos C., and Ramshaw I. A. (1987) Lectin-binding characteristics of related high- and low-metastatic mammary adenocarcinoma cell lines.Inv. Met. 7, 284–296.Google Scholar
  7. Bardosi A., Brkovic D., and Gabius H.-J. (1991) Localization of endogenous sugar-binding proteins (lectins) in tumors of the central and peripheral nervous system by biotinylated neoglycoproteins.Anticancer Res. 11, 1183–1188.PubMedGoogle Scholar
  8. Basu M., Hawes J. W., Li Z., Ghosh S., Khan F. A., Zhang B. J., and Basu S. (1991) Biosynthesis in vitro of SA-Lex and SA-diLex by alpha 1,3-fucosyly-transferases from colon carcinoma cells and embryonic brain tissues.Glycobiology 1, 527–535.CrossRefGoogle Scholar
  9. Berglung E., Thornell L.-E., and Stigbrand T. (1991a) Intracerebral distribution of Gp135, a new human brain glycoprotein.Brain Res. 549, 292–296.CrossRefGoogle Scholar
  10. Berglund E., Stigbrand T., and Carlsson S. R. (1991b) Isolation and characterization of a membrane glycoprotein from human brain with sequence similarities to cell adhesion proteins from chicken and mouse.Eur. J. Biochem. 197, 549–554.CrossRefGoogle Scholar
  11. Cai D., Webber M. M., and DeLuca L. M. (1991) Retinoids enhance lectin binding to gp 130, a glycoprotein of NIH-3T3 cells: correlation with cell growth and adhesion.Exp. Cell Res. 192, 366–372.CrossRefGoogle Scholar
  12. Castaigne S., Chomienne C., Danel M. et al. (1990) All-trans retinoic acid as a differentiation therapy for acute promeylocytic leukemia. I. Clinical results.Blood 76, 1704–1709.CrossRefGoogle Scholar
  13. Chomienne C., Ballerini P., Balitrand N., et al. (1989) Retinoic acid therapy for promyelocytic leukemia.Lancet 2, 746, 747.CrossRefGoogle Scholar
  14. Cope F. O., Wille J. J., and Tomei L. D. (1991) Retinoids and retinoid receptors in malignant disease: Clinical significance and their expression and the alteration of disease course with antisense DNA, inProspects for Antisense Nucleic Acid Therapy of Cancer and AIDS. Wiley-Liss, New York, pp. 125–141.Google Scholar
  15. Cummings R. D. and Mattox S. A. (1988) Retinoic acid-induced differentiation of the mouse teratocarcinoma cell line F9 is accompanied by an increase in the activity of UDP-galactose: beta-D-galactosyl-alpha 1,3-galactosyltransferase.J. Biol. Chem. 263, 511–519.PubMedGoogle Scholar
  16. Feizi T. (1985) Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are oncodevelopmental antigens.Nature 314, 53–57.CrossRefGoogle Scholar
  17. Finne J., Castori S., Feizi T., and Burger M. M. (1989) Lectin-resistant variants and revertants of mouse melanoma cells: differential expression of a fucosylated cell-surface antigen and altered metastasizing capacity.Int. J. Cancer 43, 300–304.CrossRefGoogle Scholar
  18. Fischer D. K., Chen T. L., and Narayan R. K. (1988) Immunological and biochemical strategies for the identification of brain tumor-associated antigens.J. Neurosurg. 68, 165–180.CrossRefGoogle Scholar
  19. Foster C. S., Gillies D. R., and Glick M. C. (1991) Purification and characterization of GDP-L-Fuc-N-acetyl-β-N-glucosaminide α-1,3-fucosyltransferase from human neuroblastoma cells: Unusual substrate specificities of the tumor enzyme.J. Biol. Chem. 266, 3526–3531.PubMedGoogle Scholar
  20. Fukushima K., Hirota M., Terasaki P. I., Wakisaka A., Togashi H., Chia D., Suyama N., Fukushi Y., Nudelman E., and Hakomori S. (1984) Characterization of sialosylated Lewisx as a new tumor-associated antigen.Cancer Res. 44, 5279–5285.PubMedGoogle Scholar
  21. Gladson C. L. and Cheresh D. A. (1991) Glioblastoma expression of vitronectin and the αvβ3 integrin: Adhesion mechanism for transformed glial cells.J. Clin. Invest. 88, 1924–1932.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gross J. L., Behrens D. L., Mullins D. E., Kornblith P. L., and Dexter D. L. (1988) Plasminogen activator and inhibitor activity in human glioma cells.Cancer Res. 48, 291–296.PubMedGoogle Scholar
  23. Hall W. A. and Fodstad O. (1992) Immunotoxins and central nervous system neoplasia.J. Neurosurg. 76, 1–12.CrossRefGoogle Scholar
  24. Holmes E. H. (1990) GDP-fucose:GM1 α-1→2fucosyltransferase is activated in parenchymal cells of rat liver during early, stages ofN-2-acetylaminofluorene induced hepatocarcinogenesis.Carcinogenesis 11, 89–94.CrossRefGoogle Scholar
  25. Huang M., Ye Y., Chen S., et al. (1988) Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia.Blood 72, 567–572.CrossRefGoogle Scholar
  26. Humphries M. J., Matsumoto K., White S. L., and Olden K. (1986) Oligosaccharide modification by Swainsonine treatment inhibits pulmonary colonization by B16-F10 murine melanoma cells.Proc. Natl. Acad. Sci. (Wash.) 83, 1752–1756.CrossRefGoogle Scholar
  27. Kannagi R., Kitahara A., Itai S., Zenita K., Shigeta K., Tachikawa T., Noda A., Hirano H., Abe M., Shin S., Fukushi Y., Hakomori S., and Imura H. (1988) Quantitative and qualitative characterization of human cancer-associated serum glycoprotein antigens expressing epitopes consisting of sialyl or sialyl-fucosyl type I chain.Cancer Res. 48, 3856–3863.PubMedGoogle Scholar
  28. Kim Y. S., Yuan M., Itzkowitz S. H., Sun Q. B., Kaizu T., Palekar A., Trump B. F., and Hakomori S. (1986) Expression of Ley and extended Ley blood group-related antigens in human malignant, premaligant and non-malignant colonic tissues.Cancer Res. 46, 5985–5992.PubMedGoogle Scholar
  29. Klug T. L., LeDonne N. C., Greber T. F., and Zurawski V. R. (1988) Purification and composition of a novel gastrointestinal tumor-associated glycoprotein expressing sialylated lacto-N-fucopentaosae II (CA 19-9).Cancer Res. 48, 1505–1511.PubMedGoogle Scholar
  30. Kuppner M. C., Van Meir E., Gauthier Th., Hamou M.-F., and de Tribolet N. (1992) Differential expression of the CD44 molecule in human brain tumours.Int. J. Cancer 50, 572–577.CrossRefGoogle Scholar
  31. Lee N., Wang W.-C., and Fukuda M. (1990) Granulocytic differentiation of HL-60 cells is associated with increase of poly-N-acetyllactosamine in Asnlinked oligosaccharides attached to human lysosomal membrane glycoproteins.J. Biol. Chem. 265, 20467–20487.Google Scholar
  32. LeGende N. (1990) Immobilon-P transfer membrane: Applications and utility in protein biochemical analysis.Biotechniques 9 (Suppl.), 788–805.Google Scholar
  33. Lehrach H., Diamond D., Wozney J. M., and Boedtker H. (1977) RNA molecular weight determinations by gel electrophoresis under denaturing conditions: a critical reexamination.Biochemistry 16, 4743–4752.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Li H., Quiroga S., and Pfenninger K. H. (1992) Variable membrane glycoproteins in different growth cone populations.J. Neurosci. 12, 2393–2402.CrossRefGoogle Scholar
  35. Lotan R., Kramer R. H., Neumann G., Lotan D., and Nicolson G. L. (1980) Retinioic acid-induced modifications in the growth and cell surface components of a human carcinoma (HeLa) cell line.Exp. Cell. Res. 130, 401.CrossRefGoogle Scholar
  36. Lotan R., Lotan D., and Amos B. (1988) Enhancement of sialyltransferase in two melanoma cell lines that are growth-inhibited by retinoic acid results in increased sialylation of different cell-surface glycoproteins.Exp. Cell Res. 177, 284.CrossRefGoogle Scholar
  37. Lowe J. B., Stoolman L. M., Nair R. P., Larsen R. D., Berhend T. L., and Marks R. M. (1990) ELAM-1 dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA.Cell 63, 475–484.CrossRefGoogle Scholar
  38. Mann P. L., Swartz C. M., and Holmes D. T. (1988) Cell surface oligosaccharide modulation during differentiation: IV. Normal and transformed cell growth control.Mech. Aging Devel. 44, 17–33.CrossRefGoogle Scholar
  39. McGuire J. C., Greene L. A., and Furano A. V. (1978) NGF stimulates incorporation of fucose of glucosamine into an external glycoprotein in cultured rat PC12 pheochromocytoma cells.Cell 15, 357–365.CrossRefGoogle Scholar
  40. Moskal J. R., Lockney, M. W., Marvel C. C., Mason P. A., Warren S. T., Trosko J. E., and Sweeley C. C. (1980) Regulation of glycoconjugate metabolism in normal and transformed cells, inCell Surface Glycolipids, ACS Symposium Series; 128, Sweeley, C. C., ed., pp. 241–264, American Chemical Society.Google Scholar
  41. Moskal J. R., Lockney M. W., Marvel C. C., Trosko J. E., and Sweeley C. C. (1987) Effect of retinoic acid and phobol-12-myristate-13-acetate on glycosyltransferase activities in normal and transformed cells.Cancer Res. 47, 787–790.PubMedGoogle Scholar
  42. Narita T. (1989) Cellular glycoproteins correlating with pulmonary-colonizing potential in B16 melanoma.Invasion Metastasis 9, 1–14.PubMedGoogle Scholar
  43. Narayan R. K., Heydorn W. E., Creed G. J., and Jacobowitz D. M. (1986) Protein patterns in various malignant human brain tumors by two-dimensional gel electrophoresis.Cancer Res. 46, 4685–4694.PubMedGoogle Scholar
  44. O’Farrell P. H. (1975) High resolution two-dimensional electrophoresis of proteins.J. Biol. Chem. 250, 4007–4011.PubMedPubMedCentralGoogle Scholar
  45. Orntoft T. F., Greenwell P., Clausen H., and Watkins W. M. (1991a) Regulation of the oncodevelopmental expression of type 1 chain ABH and Lewisb blood group antigens in human colon by α-2-L-fucosylation.Gut 32, 287–293.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Orntoft T. F., Holmes E. H., Johnson P., Hakomori S., and Clausen H. (1991b) Differential tissue expression of the Lewis blood group antigens: enzymatic, immunohistologic, and ummunochemical evidence for Lewis a dn b antigen expression in Le(a-b-) individuals.Blood 77, 1389–1396.CrossRefGoogle Scholar
  47. Phillips M. L., Nudelman E., Gaeta F. C. A., Perez M., Singhal A. K., Hakomori S.-I., and Paulsen J. C. (1990) ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl Lex.Science 250, 1130–1132.CrossRefGoogle Scholar
  48. Polley M. J., Phillips M. C., Wayner E., Nudelman E., Singhal A. K., Hakomori S., and Paulsen J. C. (1991) CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewisx.Proc. Natl. Acad. Sci. (USA) 88, 6224–6228.CrossRefGoogle Scholar
  49. Ramagli L. S. and Rodiriguez L. V. (1985) Quantitation of microgram amounts of protein in two-dimensional polyacrylamide gel electrophoresis sample buffer.Electrophoresis 6, 559–563.CrossRefGoogle Scholar
  50. Reboul P., Broquet P., George P., and Louisot P. (1990) Effect of retinoic acid on two glycosyltransferase activities in C6 cultured glioma cells.Int. J. Biochem. 22, 889–893.CrossRefGoogle Scholar
  51. Ripellino J. A., Margolis R. U., and Margolis R. K. (1989) Oligosaccharide composition, localization, and developmental changes of a CNS-specific (F3-87-8) glycoprotein.J. Neurochem. 53, 1103–1108.CrossRefGoogle Scholar
  52. Ripka J., Shin S.-I., and Stanley P. (1986) Decreased tumorigenicity correlates with expression of altered cell surface carbohydrates in Lec9 CHO cells.Molec. Cell. Biol. 6, 1268–1275.CrossRefGoogle Scholar
  53. Rudd P., Leathebarrow R. J., Rademacher T. W., and Dwek R. A. (1991) Diversification of the IgG molecule by oligosaccharides.Mol. Immunol. 28, 1369–1378.CrossRefGoogle Scholar
  54. Ruoslahti L., and Pierschbacher M. D. (1987) New perspectives in cell adhesion: RGD and integrins.Science 28, 491–497.CrossRefGoogle Scholar
  55. Rye P. D. and Walker R. A. (1989) Analysis of glycoproteins released from benign and malignant human breast: changes in size and fucosylation with malignancy.Eur. J. Cancer Clin. Oncol. 25, 65–72.CrossRefGoogle Scholar
  56. Saitoh O., Wang W.-C., Lotan R., and Fukuda M. (1992) Differential glycosylation and cell-surface expression of lysosomal membrane glycoproteins in sublines of a human colon cancer exhibiting distinct metastatic potentials.J. Biol. Chem. 267, 5700–5711.PubMedGoogle Scholar
  57. Sambrook J., Fritsch E. F., and Maniatis T. (eds.). (1989)Molecular Cloning. A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, NY.Google Scholar
  58. Schrappe M., Klier F. G., Spiro R. C., Waltz T. A., Reisfeld R. A., and Gladson C. L. (1991) Correlation to chondroitin sulfate proteoglycan expression on proliferating brain capillary endothelial cells with the malignant phenotype of astrogial cells.Cancer Res. 51, 4986–4993.PubMedGoogle Scholar
  59. Shah S., Lance P., Smith T. J., Berenson C. S., Cohen S. A., Horvath P. J., Lau J. T. Y., and Baumann H. (1992) n-Butyrate reduces the expression of β-galactoside α2,6-sialyltransferase in Hep G2 cells.J. Biol. Chem. 267, 10652–10658.PubMedGoogle Scholar
  60. Smith M. A., Parkinson D. R., Cheson B. D., and Friedman M. A. (1992) Retinoids in cancer therapy.J. Clin. Onc. 10, 839–864.CrossRefGoogle Scholar
  61. Stolz D. B. and Jacobson B. S. (1991) Macro- and microvascular endothelial cells in vitro: maintenance of biochemical heterogeneity despite loss of ultrastructural characteristics.In Vitro Cell Dev. Biol. 27A, 169–182.CrossRefGoogle Scholar
  62. Stroup G. B., Anumula K. R., Kline T. F., and Caltabiano M. M. (1990) Identification and characterization of two distinct alpha-(1,3)-L-fucosyltransferase activities in human colon carcinoma.Cancer Res. 50, 6787–6792.PubMedGoogle Scholar
  63. Tahira T., Ishizaka Y., Itoh F., Nakayasu M., Sugimura T., and Nagao M. (1991) Expression of the ret proto-oncogene in human neuroblastoma cell lines and its increase during neuronal differentiation induced by retinoic acid.Oncogene 6, 2333–2338.PubMedGoogle Scholar
  64. Towbin H., Staehelin T., and Gordon J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications.Proc. Nat. Acad. Sci. (USA) 76, 4350–4354.CrossRefGoogle Scholar
  65. VanderElst I. and Dennis J. W. (1991) N-Linked oligosaccharide processing and autocrine stimulation of tumor cell proliferation.Exp. Cell. Res. 192, 612–621.CrossRefGoogle Scholar
  66. von der Weid P. Y. and Zurn A. D. (1990) Identification of a 120kD surface glycoprotein distinguishing cultured superior cervical ganglion from ciliary ganglion neurons.Dev. Neurosci. 12, 106–115.CrossRefGoogle Scholar
  67. Warrell R., Frankel S., Miller W., et al. (1991) Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid).N. Engl. J. Med. 324, 1385–1393.CrossRefGoogle Scholar
  68. Walz G., Aruffo A., Kolanus W., Bevilacqua M., and Seed B. (1990) Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells.Science 250, 1132–1135.CrossRefGoogle Scholar
  69. Weston B. W., Naur R. P., Larsen R. D., and Lowe J. B. (1992) Isolation of a novel human α(1,3)fucosyltransferase gene and molecular comparison to the human Lewis blood group α(1,43/1,4)fucosyltransferase gene.J. Biol. Chem. 267, 4152–4160.PubMedGoogle Scholar
  70. Yazawa S., Madiyalakan R., Izawa H., Asao T., Furukawa K., and Matta K. L. (1988) Cancer-associated elevation of α-1,3-L-fucosyltransferase activity in human serum.Cancer 62, 516–520.CrossRefGoogle Scholar
  71. Yoshihra Y., Oka S., Watanabe Y., and Mori K. (1991) Developmentally and spatially regulated expression of HNK-1 carbohydrate antigen on a novel phosphatidylinositol-anchored glycoprotein in rat brain.J. Cell Biol. 115, 731–744.CrossRefGoogle Scholar
  72. Yung W., Lotan R., Lee P., et al. (1989) Modulation of growth and epidermal growth factor receptor activity by retinoic acid in human glioma cells.Cancer Res. 49, 1014–1019.PubMedGoogle Scholar
  73. Zamani M. R. and Bullock S. (1990) Effect of 2-deoxy-D-galactose on fucose incorporation into brain glycoproteins.Biochem. Soc. Trans. 18, 417,418.CrossRefGoogle Scholar
  74. Zanetta J. P., Reeber A., and Vincendon G. (1981) Glycoproteins from adult rat brain synaptic vesicles: Fractionation on four immobilized lectins.Biochim. Biophys. Acta 670, 393–400.CrossRefGoogle Scholar
  75. Zanetta J. P., Dontenwill M., Meyer A., and Roussel G. (1985) Isolation and immunohistochemical localization of a lectin-like molecule from the rat cerebellum.Brain Res. 349, 233–243.CrossRefGoogle Scholar
  76. Zhu W., Kanoh M., Ye P., Laszkiewicz I., Royland J. E., Wiggins R. C., and Konat G. (1992) Retinoic acid-regulated expression of proteolipid protein and myelin-associated glycoprotein genes in C6 glioma cells.J. Neurosci. Res. 31, 745–750.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • David L. VanderMeulen
    • 1
  • V. V. T. S. Prasad
    • 1
  • Joseph R. Moskal
    • 1
  1. 1.The Chicago Institute for Neurosurgery and NeuroresearchChicago

Personalised recommendations