Advertisement

Molecular and chemical neuropathology

, Volume 21, Issue 2–3, pp 139–154 | Cite as

Boron neutron capture therapy of primary and metastatic brain tumors

  • Rolf F. Barth
  • Albert H. Soloway
Article

Abstract

Boron neutron capture therapy (BNCT) is based on the nuclear reaction that occurs when a stable isotope, boron-10, is irradiated with low energy (0.025 eV) thermal neutrons (nth) to yield alpha (4He) particles and,7Li nuclei (10B+nth→[11B]→4He+7Li+2.79 MeV). The success of BNCT as a tumoricidal modality is dependent on the delivery of a sufficient quantity of10B andnth to individual cancer cells to sustain a lethal10B(n, α)7Li reaction. Boron delivery agents include a variety of compounds, such as the sulfhydryl containing polyhedral borane sodium borocaptate (Na2B12H11SH, [BSH]), boronoporphyrins, boronophenylalanine, carboranyl uridines (CBU), and boronated monoclonal antibodies (MAb). The present review will focus on three delivery systems that currently are under investigation in our laboratories, boronated monoclonal antibodies, carboranyl uridines, and boronophenylalanine. Methodology has been developed to heavily boronate MAb using a precision macromolecule, a “starburst” dendrimer, which can be linked to MAb by means of heterobifunctional reagents. Although the resulting immunoconjugates retain their in vitro immunoreactivity, they lose their in vivo tumor localizing properties and accumulate in the liver. In order to obviate this problem, work is now in progress to produce bispecific MAb, which can simultaneously recognize a tumor-associated antigen and a boronated macromolecule. Boron containing, nucleosides are potential vehicles for incorporating boron compounds into nucleic acids of neoplastic cells. For this purpose, carboranyl uridines have been synthesized with the boron moiety on either the pyrimidine base or on the carbohydrate component. Although such structures appear to be avidly taken up and retained by tumor cells in vitro, only the 5-carboranyl-nucleosides are converted biologically to the nucleotide. There is no evidence, however, that the latter are incorporated into nucleic acids. Other carboranyl nucleosides currently are being synthesized that may have better tumor localizing properties. The potential use of boronophenylalanine as a capture agent for the treatment of melanoma metastatic to the brain also is under investigation. A nude rat model has been developed using human melanoma cells that are stereotactically implanted into the brain. BNCT-treated animals have either had prolonged survival times or continue to live compared to control rats that invariably died of their tumors, thereby suggesting therapeutic efficacy.

Index Entries

Boron compounds neutron capture therapy melanomas gliomas monoclonal antibodies dendrimers carboranyl uridines phenylalanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam F., Barth R. F. and Soloway A. H. (1989) Boron containing immunoconjugates for neutron capture therapy of cancer and for immunocytochemistry.Antibody, Immunoconj. Radiopharm. 2, 145–163.Google Scholar
  2. Alam F., Bapat V., Soloway A. H., Barth R. F., Mafune N. and Adams D. M. (1989) Boronated compounds for neutron capture therapy.Strahlenther. Onkol. 165, 121–123.PubMedGoogle Scholar
  3. Asbury A. K., Ojeann R. G., Nielsen S. L. and Sweet W. H. (1972) Neuropathologic study of fourteen cases of malignant brain tumor treated by boron-10 slow neutron capture radiation.J. Neuropathol. Exp. Neurol. 31, 278–303.CrossRefGoogle Scholar
  4. Barth R. F., Adams D. M., Soloway A. H., Mechetner E. B., Alam F., and Anisuzzaman A. K. M. (1991) Determination of boron in tissues and cells using direct-current plasma atomic emission spectroscopy.Analy. Chem. 63, 890–893.CrossRefGoogle Scholar
  5. Barth R. F., Soloway A. H., Adams D. M. and Alam F. (1992) Delivery of boron-10 for neutron capture theory by means of monoclonal antibody-starburst dendrimer immunoconjugates. inProgress in Neutron Capture Therapy for Cancer (Allen B. W., Moore D. E., and Harrington B., eds.), Plenum, NY, pp. 265–268.CrossRefGoogle Scholar
  6. Barth R. F., Soloway A. H., Fairchild R. G. and Brugger R. M. (1992) Boron neutron capture therapy for cancer. Realities and prospects.Cancer 70, 2995–3007.CrossRefGoogle Scholar
  7. Bendayan M., Barth R. F., Gingras D., Londono I., Robinson P. T., Alam F., Adams D. M. and Mattiazzi L. (1989) Electron spectroscopic imaging for high resolution immunocytochemistry: use of boronated protein A.J. Histochem. Cytochem. 37, 573–580.CrossRefGoogle Scholar
  8. Bennett B. D., Mumford-Zisk J., Barth R. F., Soloway A. H. and Morison G. H. (1993) Probing boronated nucleoside utilization by glioma cells using ion microscopy, inAdvances in Neutron Capture Therapy, (Soloway A. H., Barth R. F., and Carpenter D. E., eds.), Plenum, NY, pp. 423–428.CrossRefGoogle Scholar
  9. Clendenon N. R., Barth R. F., Gordon W. A., Goodman J. H., Alam F., Staubus A. E., Boesel C. P., Yates A. J., Moeschberger M. L., Fairchild R. G., and Kalef-Ezra J. A. (1990) Boron neutron capture therapy of a rat glioma.Neurosurgery 26, 47–55.CrossRefGoogle Scholar
  10. Coderre J. A., Joel D. D., Micca, P. L., Nawrocky M. M. and Slatkin D. N. (1992) Control of intracerebral gliosarcomas in rats by boron neutron capture therapy with p-boronophenylalanine.Radiation Res. 129, 290–296.CrossRefGoogle Scholar
  11. Entzian W., Soloway A. H., Raju R., Sweet W. H. and Brownell G. L. (1966) Effect of neutron capture irradiation upon malignant brain tumors in mice.Acta Radiol. 5, 95–100.CrossRefGoogle Scholar
  12. Fairchild R. F. and Bond V. P. (1985) Current status of10B-neutron capture therapy: enhancement of tumor dose via beam filtration and dose rate, and the effects of these parameters on minimum boron content: a theoretical evaluation.Int. J. Radiat. Oncol. Biol. Phys. 11, 831–840.CrossRefGoogle Scholar
  13. Fairchild R. G., Bond V. P. and Woodhead A. (1989) Workshop summary of moderators’ reports, inClinical Aspects of Neutron Capture Therapy, Plenum, NY, pp. 261, 262.CrossRefGoogle Scholar
  14. Farr L. E., Sweet W. H., Robertson W. H., Foster J. S., Locksley H. B., Sutherland D. L., Mendelsohn M. L. and Stickley E. E. (1954) Neutron capture therapy with boron in the treatment of glioblastoma multiforme.Am. J. Roentgenol. 71, 279–291.Google Scholar
  15. Farr L. E., Haymaker W., Konikowski T. and Lippincott S. W. (1962) Effects of α-particles randomly induced in the brain in the neutron-capture treatment of intracranial neoplasms.Int. J. Neurol. 3, 564–575.Google Scholar
  16. Glover G. H., Pauley J. M. and Bradshaw K. M. (1992) Boron-11 imaging with a three-dimensional reconstruction method.J. Magn. Reson. Imag. 2, 47–52.CrossRefGoogle Scholar
  17. Goudgaon N. M. and Schinazi R. F. (1994) Development of boron-containing pyrimidine and nucleoside analogues for neutron capture therapy. Current topics in medicinal chemistry, in press.Google Scholar
  18. Hatanaka, H., Amano, K., Kamano S., and Sano K. (1986) Clinical experience of boron neutron capture therapy between 1968 and 1985, inNeutron Capture Therapy, (Hatanaka H., ed.), Nishimura Co., Ltd., Niigata, Japan, pp. 447–449.Google Scholar
  19. Hatanaka H., Sano K., and Yasukochi H. (1992) Clinical results of boron neutron capture therapy, inProgress in Neutron Capture Therapy for Cancer (Hatanaka H., ed.), Nishimura Co., Ltd., Niigata, Japan, pp. 561–568.CrossRefGoogle Scholar
  20. Joel D. D., Fairchild R. G., Laissue J. A., Saraf S. K., Kalef-Ezra J. A., Slatkin D. N. (1990) Boron neutron capture therapy of intracerebral rat gliosarcomas.Proc. Natl. Acad. Sci. 87, 9808–9812.CrossRefGoogle Scholar
  21. Johnson C. W., Barth R. F., and Adams D. (1987) Phenotypic diversity of murine B16 melanoma detected by anti-B16 monoclonal antibodies.Cancer Res. 47, 1111–1117.PubMedGoogle Scholar
  22. Kahl S. B., Joel D. D., Nawrocky M. M., Micca P. L., Tran K. P., Finkel G. C., and Slatkin D. N. (1990) Uptake of anido-carboranylporphyrin by human glioma xenografts in athymic nude mice and by syngeneic ovarian carcinomas in immunocompetent mice.Proc. Natl. Sci. USA 87, 7265–7269.CrossRefGoogle Scholar
  23. Köhler G. and Milstein C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity.Nature 256, 495–497.CrossRefGoogle Scholar
  24. Köhler G. and Milstein C. (1976) Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion.Europ. J. Immunol. 6, 511–519.CrossRefGoogle Scholar
  25. Liu L., Barth R. F., Soloway A. H., Anisuzzaman A. K. M., Alam F., Tjarks W., Zhao X., and Morrison G. H. (1991) Cellular uptake and distribution of 2-O-(o-Carboranyl Uridine) (CBU)Proc. Amer. Assoc. Cancer Res. 32, 407.Google Scholar
  26. Locher G. L. (1936) Biological effects and therapeutic possibilities of neutrons.Am. J. Roentgenol. Radium. Ther. 36, 1–13.Google Scholar
  27. Matalka K. Z., Bailey M. Q., Barth R. F., Staubus A. E., Soloway A. H., Moeschberger M. L., et al. (1993) Boron neutron capture therapy of intracerebral melanoma using boronphenylalanine as a capture agent.Cancer Res. 53, 3308–3313.PubMedGoogle Scholar
  28. Matsumoto T., Aoki O., and Aizawa O. (1991) Phantom experiment in calculation for in vivo boron analysis by prompt gamma ray spectroscopy.Phys. Med. Biol. 36, 329–338.CrossRefGoogle Scholar
  29. Mishima Y., Ichibashi M., Honda C., Shiono M., Nakagawa T., Obara H., Shirakawa J., Hiratsuka J., Kanda K. Kobayashi T., Nozaki T., Aizawa O., Sato T., Karashima H., Yoshino K., and Fukuda H. (1982) Specific killing effect10B-para-borono-phenylalanine in thermal neutron capture therapy of malignant melanoma:in vitro radiobiological evaluation.J. Invest. Dermatol. 78, 215–218.CrossRefGoogle Scholar
  30. Mishima Y., Ichihashi M., Honda C., Shiona M., Nakagawa T., Obara H., Shirakawa J., Hiratsuka J, Kanda K., Kobayashi T., Nozaki T., Aizawa O., Sato T., Karashima H., Yoshino K., and Fukuda H. (1972) Advances in the control of human cutaneous primary and metastatic melanoma by thermal neutron capture therapy, inProgress in Neutron Capture Therapy for Cancer. (Allen, B. J., Moore, D. E., and Harrington, B. V., eds.), Plenum, New York, pp. 577–583.Google Scholar
  31. Saris S. C., Solares G. R., Wazer D. E., Cano G., Kerley S. E., Joyce M. A., Adelman L. S., Harling O. K., Madoc-Jone H., and Zamenhof R. G. (1992) Boron neutron capture therapy for murine malignant gliomas.Cancer Res. 52, 4672–4677.PubMedGoogle Scholar
  32. Schinazi R. F. and Prusoff W. H. (1978) Synthesis and properties of boron and silicon substituted uracil or 2′-deoxyuridine.Tetrahedron Lett. 50, 4981–4984.CrossRefGoogle Scholar
  33. Solares G., Zamenhof R., and Cano G. (1993) Microdosimetry of neutron capture therapy Monte Carlo simulation and actually cell histology, inAdvances in Neutron Capture Therapy (Soloway A. H., Barth R. J., and Carpenter D. E., eds.), Plenum, pp. 213–216.Google Scholar
  34. Soloway A. H., Hatanaka H., and Davis M. A. (1967) Penetration of brain and brain tumor. VII. Tumor-binding sulfhydryl boron compounds.J. Med. Chem. 10, 714–717.CrossRefGoogle Scholar
  35. Spielvogel B., Sood A., Powell W., Tomasz J., Porter K., and Shaw G. (1993) Chemical and enzymatic incorporation of boron into DNA, inAdvances in Neutron Capture Therapy (Soloway A. H., Barth R. F., and Carpenter D. E. eds.), Plenum, pp. 389–394.Google Scholar
  36. Tjarks W., Anisuzzaman A. K. M., Liu L., Soloway A. H., Barth R. F., Perkins D. J., et al. (1992) Synthesis and in vitro evaluation of boronated urindine and glucose derivatives for boron neutron capture therapy.J. Med. Chem. 35, 1628–1633.CrossRefGoogle Scholar
  37. Tolpin E. I., Wellum G. R., Dohan F. C., Jr., Kornblith P. L., and Zamenhof R. G. (1975) Boron neutron capture therapy of cerebral gliomas, II. Utilization of the blood-brain barrier and tumor-specific antigens for the selective concentration of boron in gliomas.Oncology (Basel) 32, 223–247.CrossRefGoogle Scholar
  38. Wang C-K. C., Blue T. E., and Gahbauer R. (1989) A design study of an accelerator-based epithermal neutron source for boron neutron capture therapy.Strahlenther. Onkol. 165, 75–78.PubMedGoogle Scholar
  39. Wheeler F. J. and Nigg D. W. (1992) Three dimensional radiation dose distribution analysis for boron neutron capture therapy.Nuclear Sci. Eng. 110, 16–31.CrossRefGoogle Scholar
  40. Yamamoto Y., Seko T., Nakamivea H., Nemoto H., Hojo H., Mukai N., and Hashimoto Y. (1992) Synthesis of carboranes containing nucleoside bases. An unexpectedly high cytostatic and cytocidal toxicity towards cancer cells.J. Chem. Soc. Chem. Commun. 157–158 (January 15).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • Rolf F. Barth
    • 1
  • Albert H. Soloway
    • 2
  1. 1.Department of PathologyThe Ohio State UniversityColumbus
  2. 2.College of PharmacyThe Ohio State UniversityColumbus

Personalised recommendations