Molecular and Chemical Neuropathology

, Volume 31, Issue 2, pp 171–186

Effects of acidosis on the distribution and processing of the β-amyloid precursor protein in cultured hippocampal neurons

Original Articles

Abstract

Reported increases in brain lactate production in Alzheimer disease led us to test the hypothesis that lactic acid acidosis alters the processing of the β-amyloid precursor protein, βPP, in neurons. To test this proposition, embryonic rat hippocampal neurons were first cultured for 4 d in serum-free B27/neurobasal medium. Lactic acid at 0.5 and 1 mg/mL (pH 7.1 and, 6.9, respectively) caused a dosedependent increase in cellular β-amyloid immunoreactivity detected with antibody 4G8. Acidosis did not affect secretion of βPP or its derivatives into the medium. The cytoplasmic production of βPP was slightly reduced by acidosis without a differential effect on maturation or proteolytic processing. In the substrate-bound material, which was insoluble in nonionic detergent, acidosis caused increases in an N-terminal 75-kDa band, a C-terminal 72-kDa band, and potentially amyloidogenic bands at 35 and 38 kDa. Processing to the 4-kDa amyloid β protein was not observed in these nearly pure rat neuronal cultures. These results suggest that mild acidosis is sufficient to alter neuronal processing of the amyloid precursor protein into potentially amyloidogenic forms and increase certain βPP fragments bound to the substrate. If a similar process occurs in the presence of other cell types in the aging brain, acidosis may stimulate an extracellular deposition of amyloid and contribute to the pathogenesis of Alzheimer disease.

Index Entries

Neuron culture acidosis β-amyloid hippocampus Alzheimer disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel E. L. (1994) A further analysis of physiological changes in rats in the forced swim test.Physiol. Behav. 56, 795–800.PubMedCrossRefGoogle Scholar
  2. Brewer G. J. and Ashford J. W. A. (1992) Human serum induces Alzheimer markers in cultured hippocampal neurons.J. Neurosci. Res. 33, 355–369.PubMedCrossRefGoogle Scholar
  3. Brewer G. J., Torricelli J. R., Evege E. K., and Price P. J. (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free combination.J. Neurosci. Res. 35, 567–576.PubMedCrossRefGoogle Scholar
  4. Busciglio J., Gabuzda D. H., Matsudaira P., and Yankner B. A. (1993) Generation of betaamyloid in the secretory pathway in neuronal and nonneuronal cells.Proc. Natl. Acad. Sci. USA 90, 2092–2096.PubMedCrossRefGoogle Scholar
  5. Buxbaum J. D., Gandy S. E., Cicchetti P., Ehrlich M. E., Czernik A. J., Fracasso R. P., Ramabhadran T. V., Unterbeck A. J., and Greengard P. (1990) Processing of Alzheimer beta-A4 amyloid precursor protein—modulation by agents that regulate protein phosphorylation.Proc. Natl. Acad. Sci. USA 87, 6003–6006.PubMedCrossRefGoogle Scholar
  6. Cai X., Golde T. E., and Younkin S. G. (1993) Release of excess amyloid beta protein from a mutant amyloid protein precursor.Science 259, 514–516.PubMedCrossRefGoogle Scholar
  7. Caporaso G. L., Gandy S. E., Buxbaum J. D. and Greengard P. (1992) Chloroquine inhibits intracellular degradation but not secretion of Alzheimer beta/A4 amyloid precursor protein.Proc. Nat. Acad. Sci. USA 89, 2252–2256.PubMedCrossRefGoogle Scholar
  8. Citron M., Oltersdorf T., Haass C., McConlogue L., Hung A. Y., Seubert P., Vigopelfrey C., Lieberburg I., and Selkoe D. J. (1992) Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production.Nature 360, 672–674.PubMedCrossRefGoogle Scholar
  9. Combs D., Dempsey R., Maley M., Donaldson D., and Smith C. (1990) Relationship between plasma glucose, brain lactate, and intracellular pH during cerebral ischemia in gerbels.Stroke 21, 936–942.PubMedGoogle Scholar
  10. DeDuve C. (1959) Lysosomes, a new group of cytoplasmic particles, inSubcellular Particles (Hayashi T., ed.), pp. 128–159, The Ronald Press, New York.Google Scholar
  11. Dittmer D. S. (1961)Blood and Other Body Fluids, p. 174. Federation of American Societies for Experimental Biology, Washington, DC.Google Scholar
  12. Ferreira A., Caceres A., and Kosik K. S. (1993) Intraneuronal compartments of the amyloid precursor protein.J. Neurosci. 13, 3112–3123.PubMedGoogle Scholar
  13. Gibson G., Sheu K., Blass J., Baker A., Carlson K., Harding B., and Perrino P. (1988) Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease.Arch. Neurol. 45, 836–841.PubMedGoogle Scholar
  14. Gifford R. G., Monyer H., Christine C. W., and Choi D. W. (1990) Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures.Brain Res. 506, 339–342.CrossRefGoogle Scholar
  15. Gottfries C. G., Kjallquist A., Ponten U., Roos B. E., and Sundbarg G. (1974) Cerebrospinal fluid pH and glucolytic metabolites in Alzheimer’s disease.Brit. J. Psychiat. 124, 280–287.PubMedGoogle Scholar
  16. Haass C., Citron M., Capell A., Teplow D., and Selkoe D. (1994) Differential effect of agents altering vesicular pH on the generation of amyloid beta-peptide derived from mutant or wild type beta-APP.Soc. Neurosci. Abs. 20, 191.7.Google Scholar
  17. Haass C., Hung A. Y., Selkoe D. J., and Teplow D. B. (1994) Mutations associated with a locus for familial Alzheimer’s disease result in alternative processing of amyloid beta-protein precursor.J. Biol. Chem. 269, 17,741–17,748.Google Scholar
  18. Haass C., Koo E. H., Mellon A., Hung A. Y., and Selkoe D. J. (1992) Targeting of cell surface beta-amyloid precursor protein to lysosomes-alternative processing into amyloid-bearing fragments.Nature 357, 500–503.PubMedCrossRefGoogle Scholar
  19. Haass C., Schlossmacher M. G., Hung A. Y., Vigopelfrey C., Mellon A., Ostaszewski B. L., Lieberburg I., Koo E. H., Schenk D., Teplow D. B., and Selkoe D. J. (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism.Nature 359, 322–325.PubMedCrossRefGoogle Scholar
  20. Heuser J. (1989) Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH.J. Cell. Biol. 108, 855–864.PubMedCrossRefGoogle Scholar
  21. Hilbich C., Monning U., Grund C., Masters C. L., Beyreuther K. (1993) Amyloid-like properties of peptides flanking the epitope of amyloid precursor protein-specific monoclonal antibody-22C11.J. Biol. Chem. 268, 26,571–26,577.Google Scholar
  22. Hoyer S., Oesterreich K., and Wagner O. (1988) Glucose metabolism as the site of the primary abnormality.Neurology 235, 143–148.CrossRefGoogle Scholar
  23. Kaku D. A., Giffard R. G., and Choi D. W. (1993) Neuroprotective effects of glutamate antagonists and extracellular acidity.Science 260, 1516–1518.PubMedCrossRefGoogle Scholar
  24. Kim K. S., Miller D. L., Chen C. M., Sapienza V. J., Bai C., Grundke-Iqbal I., Currie J. R., and Wisniewski H. M. (1988) Production and characterization of monoclonal antibodies reactive to synthetic cerebrovascular amyloid peptide.Neurosci. Res. Commun. 2, 121–130.Google Scholar
  25. Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  26. Liguri G., Taddei N., Nassi P., Latorraca S., Nediani C., and Sorbi S. (1990) Changes in Na+, K+-ATPase, Ca2+-ATPase and some soluble enzymes related to energy metabolism in brains of patients with Alzheimer’s disease.Neurosci. Lett. 112, 338–342.PubMedCrossRefGoogle Scholar
  27. Mullan M., Crawford F., Axelman K., Houlden H., Lilius L., Winblad B., and Lannfelt L. (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid.Nature Genet. 1, 345–347.PubMedCrossRefGoogle Scholar
  28. Naidu A., Quon D., and Cordell B. (1995) Beta-amyloid peptide produced in vitro is degraded by proteinases released by cultured cells.J. Biol. Chem. 270, 1369–1374.PubMedCrossRefGoogle Scholar
  29. Ou-Yang Y. B., Kristian T., Mellergard P., and Siesjo B. K. (1994) The influence of pH on glutamate- and depolarization-induced increases of intracellular calcium concentration in cortical neurons in primary culture.Brain Res. 646, 65–72.PubMedCrossRefGoogle Scholar
  30. Ogawa M., Fukuyama H., Ouchi Y., Yamauchi H., and Kimura J. (1994) Altered energy metabolism in Alzheimer’s disease.Clin. Neurol. (Japan) 34, 27–31.Google Scholar
  31. Parker W. D., Filley C. M., and Parks J. K. (1990) Cytochrome oxidase deficiency in Alzheimer’s disease.Neurology 40, 1302, 1303.PubMedGoogle Scholar
  32. Parker W. D., Parks J., Filley C. M., and Kleinschmidtdemasters B. K. (1994) Electron transport chain defects in Alzheimer’s disease brain.Neurology 44, 1090–1096.PubMedGoogle Scholar
  33. Parnetti L., Gaiti A., Polidori M. C., Brunetti M., Palumbo B., Chionne F., Cadini D., Cecchetti R., and Senin U. (1995) Increased cerebrospinal fluid pyruvate levels in Alzheimer’s disease.Neurosci. Lett. 199, 231–233.PubMedCrossRefGoogle Scholar
  34. Parton R., Dotti C., Bacallao R., Kurtz I., Simons K., and Prydz K. (1991) pH-induced microtubule-dependent redistribution of late endosomes in neuronal and epithelial cells.J. Cell Biol. 113, 261–274.PubMedCrossRefGoogle Scholar
  35. Pike C. J., Burdick D., Walencewicz A. J., Glabe C. G., and Cotman C. W. (1993) Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state.J. Neurosci. 13, 1676–1687.PubMedGoogle Scholar
  36. Saido T. C., Yokota M., Maruyama K., Yamaoharigaya W., Tani E., Ihara Y., and Kawashima S. (1994) Spatial resolution of the primary beta-amyloidogenic process induced in postischemic hippocampus.J. Biol. Chem. 269, 15,253–15,257.Google Scholar
  37. Schagger H. and Von Jagow G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa.Anal. Chem. 166, 368–379.Google Scholar
  38. Scheuner D., Eckman C., Jensen M., Song X., Citron M., Suzuki N., Bird T. D., Hardy J., Hutton M., Kukull W., Larson E., Levy-Lahad E., Viitanen M., Peskind E., Poorkaj P., Schellenberg G., Tanzi R., Wasco W., Lannfelt L., Selkoe D., and Younkin S. (1996). Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increasedin vivo by the presenilin 1 and 2 andAPP mutations linked to familial Alzheimer’s disease.Nature Med. 2, 864–870.PubMedCrossRefGoogle Scholar
  39. Selkoe D. J. (1994) Alzheimer’s disease: A central role for amyloid.J. Neuropathol. Exp. Neurol. 53, 438–447.PubMedCrossRefGoogle Scholar
  40. Siesjo B., Bendek G., Koide T., Westerberg E., and Wieloch T. (1985) Influence of acidosis on lipid peroxidation in brain tissues in vitro.J. Cereb. Blood Flow Metab. 5, 253–258.PubMedGoogle Scholar
  41. Simonian N. A. and Hyman B. T. (1993) Functional alterations in Alzheimer’s disease— diminution of cytochrome oxidase in the hippocampal formation.J. Neuropath. Exp. Neurol. 52, 580–585.PubMedGoogle Scholar
  42. Smith H. M., Hanwehr R., and Seisjo B. (1986) Changes in extra- and intracellular pH in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats.J. Cereb. Blood Flow Metab. 6, 574–583.PubMedGoogle Scholar
  43. Terry R. D., Masliah E., Salmon D. P., Butters N., Deteresa R., Hill R., Hansen L. A., and Katzman R. (1991) Physical basis of cognitive alterations in Alzheimer’s disease— synapse loss is the major correlate of cognitive impairment.Ann. Neurol. 30, 572–580.PubMedCrossRefGoogle Scholar
  44. Tombaugh G. C. (1994) Mild acidosis delays hypoxic spreading depression and improves neuronal recovery in hippocampal slices.J. Neurosci. 14, 5635–5643.PubMedGoogle Scholar
  45. Tombaugh G. C. and Sapolsky R. M. (1990) Mild acidosis protects hippocampal neurons from injury induced by oxygen and glucose deprivation.Brain Res. 506, 343–345.PubMedCrossRefGoogle Scholar
  46. Trojanowski J. Q. and Lee V. M. Y. (1994) Paired helical filament tau in Alzheimers disease— the kinase connection.Amer. J. Pathol. 144, 449–453.Google Scholar
  47. Tsuzuki K., Fukatsu R., Takamaru Y., Fujii N., and Takahata N. (1994) Potentially amyloidogenic fragment of 50 kDa and intracellular processing of amyloid precursor protein in cells cultured under leupeptin.Brain Res. 659, 213–220.PubMedCrossRefGoogle Scholar
  48. Weidemann A., Konig G. Bunke D., Fischer P., Salbaum J. M., Masters C. L., and Beyreuther K. (1989) Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein.Cell 57, 115–126.PubMedCrossRefGoogle Scholar
  49. Yankner B., Dawes L., Fisher S., Villa-Komaroff L., Oster-Granite M., and Neve R. (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease.Science 245, 417–420.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  1. 1.Department of Medical Microbiology and ImmunologySouthern Illinois University School of MedicineSpringfield

Personalised recommendations