Molecular and Chemical Neuropathology

, Volume 29, Issue 1, pp 93–104 | Cite as

Astrocytoma and Schwann cells in coculture

  • Preeti G. Lal
  • Roopa S. Ghirnikar
  • Lawrence F. Eng
Original Articles


Glial fibrillary acidic protein (GFAP) is the principal intermediate filament protein found in mature astrocytes. Although the exact function of GFAP is poorly understood, it is presumed to stabilize the astrocyte’s cytoskeleton and help in maintaining cell shape. Previous studies from our laboratory have shown that when astrocytes were cocultured with primary Schwann cells (pSCs), astrocytes became hypertrophied and fibrous with intensely positive GFAP staining and segregated Schwann cells (SCs) into pockets. In order to understand the functional role of GFAP in this already established astrocyte-SC coculture model, we generated GFAP-negative cell lines from a GFAP-positive astrocytoma cell line and cocultured both the cell lines with pSCs. Our studies demonstrate that the GFAP-positive cell line put out processes toward the SCs, whereas the GFAP-negative cells did not form processes and the majority of the cells remained round. The most significant and interesting finding of this study, however, is the formation of elaborate processes by SCs when grown in coculture with the astrocytoma cells, unlike SCs cultured alone, which showed their typical bipolar spindle-shaped morphology. The extent of processes did not seem to be dependent on GFAP, since SCs cultured with both the cell lines formed similar processes. This coculture model may be useful in elucidating the factor(s) responsible for the formation of processes by SCs and can be further help in our understanding of the mechanism of morphological transformation of SCs.

Index Entries

Coculture GFAP astrocytoma Schwann cells morphological transformation processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bignami A., Raju T., and Dahl D. (1982) Localization of vimentin the non-specific intermediate filament protein in embryonal glia and in early differentiating neuronsIn vivo andin vitro immunofluorescence study of the rat embryo with vimentin and neurofilament antisera.Dev. Biol. 91, 286–295.PubMedCrossRefGoogle Scholar
  2. Brockes J. P., Fields K. L., and Raff M. C. (1979) Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerves.Brain Res. 165, 105–118.PubMedCrossRefGoogle Scholar
  3. Carey D. J., Stahl R. C., Cizmeci-Smith G., and Asundi V. K. (1994) Syndecan-1 expressed in Schwann cells causes morphological transformation and cytoskeletal reorganization and associates with actin during cell spreading.J. Cell Biol. 124, 161–170.PubMedCrossRefGoogle Scholar
  4. Dahl D., Rueger D. C., and Bignami A. (1981) Vimentin, the 57,000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component in immature glia.Eur. J. Cell Biol. 24, 191–196.PubMedGoogle Scholar
  5. Duffy P. E., Huang Y. Y., and Rapport M. M. (1982) The relationship of GFAP to the shape, motility, and differentiation of human astrocytoma cells.Exp. Cell Res. 139, 145–157.PubMedCrossRefGoogle Scholar
  6. Eng L. F., Stocklin E., Lee Y-L., Shiruba R. A., Coria F., Halks-Miller M., Mozsgai C., Fukaryama G., and Gibbs M. (1986) Astrocyte culture on nitrocellulose membranes and plastic: Detection of cytoskeletal proteins and mRNAs by immunocytochemistry and in situ hybridization.J. Neurosci. Res. 16, 239–250.PubMedCrossRefGoogle Scholar
  7. Ghirnikar R. S. and Eng L. F. (1994) Astrocytes-Schwann cell interactions in culture.GLIA 11, 367–377.PubMedCrossRefGoogle Scholar
  8. Ghirnikar R. S., Yu A. C. H., and Eng L. F. (1994) Astrogliosis in culture III. Effect of a recombinant retrovirus expressing antisense glial fibrillary acidic protein RNA.J. Neurosci. Res. 38, 376–385.PubMedCrossRefGoogle Scholar
  9. Goldman J. E. and Chiu F. C. (1984) Growth kinetics, cell shape and the cytoskeleton of primary astrocytic cultures.J. Neurochem. 42, 175–184.PubMedCrossRefGoogle Scholar
  10. Gomi H., Yokoyama T., Fujimoto K., Ikeda T., Katoh A., Itoh T., and Itohara S. (1995) Mice devoid of the glial fibrillary acidic protein develops normally and are susceptible to scrapie prions.Neuron 14, 29–41.PubMedCrossRefGoogle Scholar
  11. Green K. J. (1990) Interaction of intermediate filaments with the cell surface, inCellular and Molecular Biology of Intermediate Filament (Goldman R. D. and Steinert P. M., eds.), pp. 147–165, Plenum, New York.Google Scholar
  12. Hozumi I., Chiu F-C., and Norton W. T. (1990) Biochemical and immunocytochemical changes in glial fibrillary acidic protein after stab wounds.Brain Res. 524, 64–71.PubMedCrossRefGoogle Scholar
  13. Jeneczko K. (1988) The proliferative response of astrocytes to injury in neonatal rat brain. A combined immunocytochemical and autoradiographic study.Brain Res. 456, 280–285.CrossRefGoogle Scholar
  14. Kalnins I., Subrahmanyan L., and Opas M. (1986) The cytoskeleton, inAstrocytes, Cell Biology and Pathology of Astrocytes, (Fedoroff S. and Vernadakis A., eds.), pp. 27–60, Academic, Orlando, FL.Google Scholar
  15. Laemmli U. K. (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4.Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  16. Lazarides E. (1982) Intermediate filaments—a chemical heterogeneous, developmentally regulated class of proteins.Annu. Rev. Biochem. 51, 219–250.PubMedCrossRefGoogle Scholar
  17. Lee Y. S., Bigner S. H., Eng L. F., Molnar P., Kuruvilla A., Groothuis D. R., and Bigner D. D. (1986) A glial fibrillary acidic protein-expressing and tumorigenic cell line derived from an avian sarcoma virus-induced rat astrocytoma.J. Neuropathol. Exp. Neurol. 45, 704–720.PubMedCrossRefGoogle Scholar
  18. Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  19. Miller A. D. and Rosman G. J. (1989) Improved retroviral vectors for gene transfer and expression.BioTechniques 7, 581–589.CrossRefGoogle Scholar
  20. Morrison R. S., De Vellis J., Lee Y., Bradshaw R. A., and Eng L. F. (1985) Hormones and growth factors induce the synthesis of GFAP in rat brain astrocytes.J. Neurosci. 14, 167–176.CrossRefGoogle Scholar
  21. Nitta T., Ebato M., Sato K., and Okumura K. (1994) Expression of tumor necrosis factor-α, −β and interferon-γ genes within human neuroglial tumor cells and brain specimens.Cytokine 6, 171–180.PubMedCrossRefGoogle Scholar
  22. Obremski V. J., Wood P. M., and Bunge M. B. (1993) Fibroblasts promote Schwann cell basal lamina deposition and elongation in the absence of neurons in culture.Dev. Biol. 160, 119–134.PubMedCrossRefGoogle Scholar
  23. Pekny M., Leveen P., Pekna M., Eliasson C., Berthold C. H., Westermark E., Betshotz C. (1995) Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally.EMBO J. 14, 1590–1598.PubMedGoogle Scholar
  24. Rutka J. T. and Smith S. L. (1993) Transfection of human astrocytoma cells with glial fibrillary acidic protein complementary DNA: Analysis of expression, proliferation, and tumorigenicity.Cancer Res. 53, 3624–3631.PubMedGoogle Scholar
  25. Rutka J. T., Hubbard S. L., Fukuyama K., Matsuzawa K., Dirks P. B., and Becker L. E. (1994) Effects of antisense glial fibrillary acidic protein complementary DNA on the growth, invasion and adhesion of human astrocytoma cells.Cancer Res. 54, 3267–3272.PubMedGoogle Scholar
  26. Samoto K., Ikezaki K., Ono M., Shono T., Kohno K., Kuwano M., and Fukui M. (1995) Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors.Cancer Res. 55, 1189–1193.PubMedGoogle Scholar
  27. Schliwa M. (1986)The Cytoskeleton: An Introductory Survey, Cell Biology Monographs, vol. 13. Springer-Verlag, Berlin.Google Scholar
  28. Shafit-Zagardo B., Peterson C., and Goldman J. E. (1988) Astrocytes regulate GFAP mRNA levels by cyclic AMP and protein kinase C dependent mechanism.GLIA 1, 346–354.PubMedCrossRefGoogle Scholar
  29. Sternberger L. S., Hardy P. H., Jr., and Cuculis J. J. (1970) The unlabeled anti-body enzyme method of immunohistochemistry: Preparation and properties of stable antigen-antibody complex (horseradish peroxidase-antiperoxidase) and its use in the identification of spirochetes.J. Histochem. Cytochem. 18, 315–333.PubMedGoogle Scholar
  30. Stewart H. J., Eccleston P. A., Jessen K. R., and Mirsky R. (1991) Interaction between cAMP elevation, identified growth factors, and serum components in regulating Schwann cell growth.J. Neurosci. Res. 30(2), 346–352.PubMedCrossRefGoogle Scholar
  31. Towbin H., Staehelin T., and Gordon J. (1979) Electrophoretic transfer of protein from polyacrylamide gel to nitrocellulose sheets: procedure and some application.Proc. Natl. Acad. Sci. USA 76, 4350–4354.PubMedCrossRefGoogle Scholar
  32. Weinstein D. E., Shelanski M. L., and Liem R. K. H. (1991) Suppression by antisense mRNA demonstrate a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons.J. Cell Biol. 112, 1201–1213.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • Preeti G. Lal
    • 1
  • Roopa S. Ghirnikar
    • 1
  • Lawrence F. Eng
    • 1
    • 2
  1. 1.Department of PathologyStanford University School of MedicineStanford
  2. 2.Pathology ResearchVeterans Affairs Medical CenterPalo Alto

Personalised recommendations