Striatal dopamine depletion, tremors, and hypokinesia following the intracranial injection ofS-adenosylmethionine

A possible role of hypermethylation in parkinsonism
  • Clivel G. Charlton
  • Bernard Crowell
Original Articles


The major symptoms of Parkinson disease (PD) are tremors, hypokinesia, rigidity, and abnormal posture, caused by the degeneration of dopamine (DA) neurons in the substantia nigra (SN) and deficiency of DA in the neostriatal DA terminals. Norepinephrine (NE) and serotonin (5-HT) levels in the neostriatum and tyrosine hydroxylase and melanin pigments in the substantia nigra are also decreased, and brain cholinergic activity is increased. The cause of PD is unknown, but PD is an age-related disorder, suggesting that changes that occur during the aging process may help to precipitate PD. Methylation increases in aging animals. Increased methylation can deplete DA, NE, and 5-HT; increase acetylcholine; and cause hypokinesia and tremors. These effects are similar to changes seen in PD, and interestingly also, they are similar to some of the changes that are associated with the aging process. It is suggested, therefore, that increased methylation may be an inducing factor in parkinsonism. Accordingly, the effects of an increase in methylation in the brain of rats were studied.S-adenosylmethionine (AdoMet), the limiting factor in the methylation process, was injected into the lateral ventricle of rats. Specific behavioral changes that resemble changes seen in PD were investigated. The results showed that AdoMet caused tremors, rigidity, hypokinesia, and depleted DA. The hypokinetic effects of a single dose of AdoMet lasted for about 90 min. AdoMet has a dose-dependent hypokinetic effect. A dose of 9.4 nmol reduced movement time (MT) by 68.9% and increased rest time (RT) by 20.7%, and a dose of 400 mnol reduced MT by 92.4% and increased RT by 27.6%. The normethyl analog of AdoMet,S-adenosylhomocysteine, did not cause hypokinesia or tremors, but it blocked the AdoMet-induced motor effects.l-dopa, the precursor of DA, also blocked the AdoMet-induced motor effects. These data suggest that the methyl group of AdoMet as well as DA depletion are involved in the AdoMet-induced motor effects. A dose of 0.65 μmol of AdoMet depleted DA in the ipsilateral caudate nucleus (CN) or neostriatum by 50.1%, and DA in the contralateral CN was reduced by 9.3%. Double the dose of AdoMet did not increase the depletion of DA on the ipsilateral CN, but DA in the contralateral CN was decreased by 26.3%. Taken together, the results suggest that increased methylation may contribute to the symptoms of PD.

Index Entries

Parkinson disease methylation S-adenosyl-l-methionine dopamine tremor tyrosine hydroxylase neuronal degeneration 


  1. Alvord E. C., Jr., Forno L. S., Kusske J. A., Kaufman R. J., Rhodes J. S., and Goetowski C. R. (1974) The pathology of parkinsonism: comparison of degeneration in cerebral cortex and brainstem.Adv. Neurol. 5, 175–193.PubMedGoogle Scholar
  2. Baldessarini R. J. and Kopin I. J. (1966)S-adenosylmethionine in brain and other tissues.J. Neurochem. 13, 769–777.PubMedCrossRefGoogle Scholar
  3. Barbeau A., Tetreault L., Morazain L., and Oliva L. (1965) Pharmacology of 3,4-dimethoxyphenylamine.Can. Med. Assoc. J. 92, 347.Google Scholar
  4. Barbeau A. (1968) Dopamine and dopamine metabolites in Parkinson’s disease— a review.Proc. Aust. Assoc. Neurol. 5, 95–100.PubMedGoogle Scholar
  5. Blusztajn J. K., Zeisel S. H., and Wurtman R. J. (1979) Synthesis of lecithin (phosphatidylcholine) frm phosphatidylethanolamine in bovine brain.Brain Res. 179, 319–327.PubMedCrossRefGoogle Scholar
  6. Blusztajn J. K. and Wurtman R. J. (1983) Choline and cholinergic neurons.Science 221, 614–620.PubMedCrossRefGoogle Scholar
  7. Charlton C. G. and Way E. L. (1978) Tremor induced byS-adenosyl-L-methionine: possible relation tol-dopa effects.J. Pharma. Pharmacol. 30, 819–820.Google Scholar
  8. Charlton C. G. and Crowell B., Jr. (1990) Relationship between excessS-adenosylmethionine (SAM-dependent methylation) and Parkinson’s disease.Neurosci. Abstr. 16(1), 810.Google Scholar
  9. Charlton C. G. and Crowell B. Jr. (1992) Parkinson’s disease-like effects ofS-adenosyl-l-methionine: effects ofl-dopa.Pharm. Biochem. Behav. 43, 423–431.CrossRefGoogle Scholar
  10. Clarke S. (1992) Protein isoprenylation and methylation at carboxyl-terminal cysteine residues.Annu. Rev. Biochem. 61, 355–386.PubMedCrossRefGoogle Scholar
  11. Collins M. A., Neafsey E. J., Matsubara K., Cobuzzi R. J., Jr., and Rollema H. (1992) Indole-N-methylated beta-carbolinium ions as potential brain-bioactivated neurotoxins.Brain Res. 570, 154–160.PubMedCrossRefGoogle Scholar
  12. Coyle J. T. and Henry D. (1973) Catecholamines in fetal and newborn rat brain.J. Neurochem. 21, 61–67.PubMedCrossRefGoogle Scholar
  13. Crowell B., Jr., Benson R., Shockley D., and Charlton C. G. (1993)S-adenosyl-l-methionine decreases motor activity in rat: similarity to Parkinson’s disease-like symptoms.Behav. Neural Biol. 59, 186–193.PubMedCrossRefGoogle Scholar
  14. De Olivera Filgueiras O. M., Van Den Basselaar A. H. H. P., and Van Den Bosch H. (1979) Localization of lysophosphatidylcholine in bovine chromaffin granules.Biochim. Biophys. Acta 558, 73–84.CrossRefGoogle Scholar
  15. Diliberto E. J., Jr., and Axelrod J. (1976) Regional and subcellular distribution of protein carboxymethylase in brain and other tissues.J. Neurosci. 26, 1159–1165.Google Scholar
  16. Diliberto E. J., Jr., Viveros O. H., and Axelrod J. (1976) Subcellular distribution of protein carboxymethylase and its endogenous substrates in the adrenal medulla: possible role in excitation-secretion coupling.Proc. Natl. Acad. Sci. USA 73, 4050–4054.PubMedCrossRefGoogle Scholar
  17. Eadie M. J. (1963) The pathology of certain medullary nuclei in parkinsonism.Brain 86, 781–790.PubMedCrossRefGoogle Scholar
  18. Ernst A. M. (1962) Phenomena of the hypokinetic rigid type caused by O-methylation of dopamine in the para-position.Nature (Lond) 193, 178, 179.CrossRefGoogle Scholar
  19. Feuerstein C., Tauche M., Serre F., Gavend M., Pellat J., and Perret J. (1977) Does O-methylation play a role in levo-dopa-induced dyskinesias?Acta Neurol. Scand. 56, 79–82.PubMedCrossRefGoogle Scholar
  20. Forno L. S. and Norvill R. L. (1976) Ultrastructure of Lewy bodies in the stellate ganglion.Acta Neuropathol. 34, 183–197.PubMedCrossRefGoogle Scholar
  21. Gagnon C., Viveros O. H., Diliberto E. J., and Axelrod J. (1978) Enzymatic methylation of carboxyl groups of chromaffin granule membrane proteins.J. Biol. Chem. 253, 3778–3781.PubMedGoogle Scholar
  22. Ganong W. F. (1991)Review of Medical Physiology. Appleton and Lange, San Francisco, CA.Google Scholar
  23. Gharib A., Sarda N., Chabannes B., Cronenberger L., and Pacheco H. (1982) The regional concentrations ofS-adenosyl-l-methionine,S-adenosyl-l-homocysteine and adenosine in rat brain.J. Neurochem. 38, 810–815.PubMedCrossRefGoogle Scholar
  24. Goodman L. S. and Gilman A. (1981)The Pharmacological Basis of Therapeutics. Macmillan, New York.Google Scholar
  25. Hardie R. J., Lees A. J., and Stern G. M. (1986) Pharmacokinetics of levo-dopa and motor fluctuations.Adv. Neurol. 45, 487–492.Google Scholar
  26. Hirata F. and Axelrod J. (1978) Enzymatic methylation of phosphatidylethanolamine increases erythrocyte membrane fluidity.Nature 275, 219, 220.PubMedCrossRefGoogle Scholar
  27. Jager D. H. and Bethlem J. (1960) The distribution of Lewy bodies in the central and autonomic nervous systems in idiopathic paralysis agitans.J. Neurol. Neurosurg. Psychiatr. 6, 283–290.CrossRefGoogle Scholar
  28. Jager W. A. den (1969) Sphingomyelin in Lewy inclusion bodies in Parkinson’s disease.Arch. Neurol. (Chicago) 21, 615–619.Google Scholar
  29. Jenner P. J. and Marsden C. D. (1988) MPTP-induced parkinsonism as an experimental model of Parkinson’s disease. In:Parkinson’s Disease and Movement Disorders (Jankovic J. and Tolosa E., eds.), pp. 37–48, Urban & Schwarzenberg, Baltimore-Munich.Google Scholar
  30. Knoll J. (1988) The striatal dopamine dependency of life span in male rats, longivity study with (−) deprenyl.Mech. Aging Dev. 46, 237–262.PubMedCrossRefGoogle Scholar
  31. Langston J. W. and Forno L. S. (1978) The hypothalamus in Parkinson disease.Ann. Neurol. 3, 129–133.PubMedCrossRefGoogle Scholar
  32. Maksem J., Jacobson N., and Neiderhiser D. H. (1984) Lysophosphatidylcholine-induced gastric injury and ulceration in the guinea pig.Am. J. Pathol. 115, 288–295.PubMedGoogle Scholar
  33. Mays L. I., Borek E., and Finch C. E. (1973) Glycine N-methyltransferase is a regulatory enzyme which increases in aging animals.Nature 243, 411–413.PubMedCrossRefGoogle Scholar
  34. Mena M. A., Murados V., Brazen E., Reiriz J., and De Yebenes J. G. (1977) Pharmacokinetics ofl-dopa in patients with Parkinson’s disease.Adv. Neurol. 45, 481–486.Google Scholar
  35. Muenter M. D., Sharpless N. S., and Tyce G. M. (1972) Plasma 3-O-methyldopa inl-dopa therapy of Parkinson’s disease.Mayo Clin. Proc. 47, 389–395.PubMedGoogle Scholar
  36. Ohama E. and Ikuta F. (1976) Parkinson’s disease: distribution of Lewy bodies and monoamine neuron system.Acta Neuropathol. (Berl) 34, 311–319.CrossRefGoogle Scholar
  37. Phillips M. R., Pillinger M. H., Strand R., Volker C., Rosenfeld M. G., Weissman G., and Stock J. B. (1993) Carboxymethylation of Ras-related proteins during signal transduction in neurophils.Science 259, 977–980.CrossRefGoogle Scholar
  38. Rajput A. H. and Rozdisky B. (1970) Dysautonomia in parkinsonism: a clinico-pathological study.J. Neurol. Neurosurg. Psychiatr. 39, 1092–1100.CrossRefGoogle Scholar
  39. Schultz W. (1988) MPTP-induced parkinsonism in monkeys: mechanisms of action, selectivity and pathophysiology.Gen. Pharmacol. 19, 153–161.PubMedGoogle Scholar
  40. Selby G. (1968) Cerebral atrophy in parkinsonismJ. Neurol. Sci. 6, 517–559.PubMedCrossRefGoogle Scholar
  41. Sellinger O. Z., Kramer C. M., Conger A., and Duboff G. S. (1988) The carboxylmethylation of cerebral membrane-bound proteins increases with age.Mech. Aging Dev. 43, 161–173.PubMedCrossRefGoogle Scholar
  42. Sharman D. F. (1976) The effect of drugs on dopamine in the striatum. In:Third Symposium on Parkinson’s Disease (Gillingham F. J. and Donaldson I. M. L., eds.), pp. 24–32, E and L Livingston, London.Google Scholar
  43. Slomiany B. L., Jerzy-Glass G. B., Kojima K., Banas-Gruszka Z., and Slomiany A. (1981) Effect of lysolecithin on the constitutents of gastric mucus. In:International Symposium on Mucus in Health and Disease (Chantler N., Elder J. B., and Elstein M., eds.), pp. 163–174, Plenum, New York.Google Scholar
  44. Stramentinoli G., Gualano M., Catto E., and Algeri S. (1977) Tissue levels ofS-adenosylmethionine in aging rats.J. Gerontol. 32, 392–394.PubMedGoogle Scholar
  45. Taufek H. R. and Bone A. H. (1984) Influence of exogenousl-3,4-hydroxyphenylalanine (l-dopa) on methionine andS-adenosylmethionine concentrations in the brain and other tissues.Biochem. Soc. Trans. 8, 62–63.Google Scholar
  46. Tuomisto L. (1977) Ontogenesis and regional distribution of histamine and histamine-N-methyltransferase in the guinea pig brain.J. Neurochem. 28, 271–276.PubMedCrossRefGoogle Scholar
  47. Vanderhaegen J. J., Poirier O., and Steronon J. E. (1970) Pathological findings in idiopathic orthostatic hypotension.Arch. Neurol. 22, 207–214.Google Scholar
  48. Volpe J. J. and Laster L. (1970) Trans-sulphuration in primate brain: regional distribution of methionine-activating enzyme in the brain of the Rhesus monkey at various stages of development.J. Neurochem. 17, 413–424.PubMedCrossRefGoogle Scholar
  49. Weltzien H. U. (1979) Cytolytic and membrane perturbing properties of lysophosphatidylcholine.Biochim. Biophys. Acta 559, 259–287.PubMedGoogle Scholar
  50. Wurtman R. J., Rose C. M., Matthysse S., Stephenson J., and Baldessarini R. J. (1970)l-dihydroxyphenylalanine: effect onS-adenosylmethionine in brain.Science 169, 395–397.PubMedCrossRefGoogle Scholar
  51. Yahr M. D. and Bering E. A. (1968)Parkinson’s Disease: Present Status and Research Trends. Columbia University Press, New York.Google Scholar

Copyright information

© Humana Press Inc 1995

Authors and Affiliations

  • Clivel G. Charlton
    • 1
  • Bernard Crowell
    • 1
  1. 1.Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical SciencesFlorida A and M UniversityTallahassee

Personalised recommendations