Molecular and Chemical Neuropathology

, Volume 26, Issue 3, pp 231–245 | Cite as

tau protein in cerebrospinal fluid

A biochemical marker for axonal degeneration in Alzheimer disease?
  • K. Blennow
  • A. Wallin
  • H. Ågren
  • C. Spenger
  • J. Siegfried
  • E. Vanmechelen
Original Articles


Cerebrospinal fluid (CSF) biochemical markers for Alzheimer disease (AD) would be of great value to improve the clinical diagnostic accuracy of the disorder. As abnormally phosphorylated forms of the microtubule-associated protein tau have been consistently found in the brains of AD patients, and since tau can be detected in CSF, two assays based on several well-defined monoclonal tau antibodies were used to study these proteins in CSF. One assay detects most normal and abnormal forms of tau (CSF-tau), while the other is highly specific for phosphorylated tau (CSF-PHFtau). A marked increase in CSF-PHFtau was found in AD (2230±930 pg/mL), as compared with controls (640±230 pg/mL;p<0.0001), vascular dementia, VAD (1610±840 pg/mL;p<0.05), frontal lobe dementia, FLD (1530±1000 pg/mL;p<0.05), Parkinson disease, PD (720±590 pg/mL;p<0.0001), and patients with major depression (230±130 pg/mL;p<0.0001). Parallel results were obtained for CSF-tau. No less than 35/40 (88%) of AD patients had a CSF-PHFtau value higher than the cutoff level of 1140 pg/mL in controls. The present study demonstrates that elevated tau/PHFtau levels are consistently found in CSF of AD patients. However, a considerable overlap is still present with other forms of dementia, both VAD and FLD. CSF-tau and CSF-PHFtau may therefore be useful as a positive biochemical marker, to discriminate AD from normal aging, PD, and depressive pseudodementia. Further studies are needed to clarify the sensitivity and specificity of these assays, including follow-up studies with neuropathological examinations.

Index Entries

Alzheimer disease (AD) biochemical markers cerebrospinal fluid (CSF) tau protein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Psychiatric Association (1987)Diagnostic and Statistical Manual of Mental Disorders, 3rd ed., American Psychiatric Association, Washington, DC.Google Scholar
  2. Bancher, C., Brunner C., Lassman H., Budka H., Jellinger K., Wiche G., Seitelberger F., Grundke-Iqbal I., Iqbal K., and Wisniewski H. M. (1989) Accumulation of abornmally phosphorylated τ precedes the formation of neurofibrillary tangles in Alzheimer disease.Brain Res. 477, 90–99.PubMedCrossRefGoogle Scholar
  3. Bissette G., Smith W. H., Dole K. C., Crain B., Ghanbari H., Miller B., and Nemeroff C. B. (1991) Alterations in Alzheimer’s disease-associated protein in Alzheimer’s disease frontal and temporal cortex.Arch. Gen. Psychiat. 48, 1009–1012.PubMedGoogle Scholar
  4. Blennow K., Wallin A., and Gottfries C. G. (1991) Presence of parietal lobe symptomatology distinguishes early and late onset Alzheimer’s disease.Int. J. Geriatr. Psychiat.,6, 147–154.CrossRefGoogle Scholar
  5. Blennow K. and Wallin A. (1992) Clinical heterogeneity of probable Alzheimer’s disease.J. Geriatr. Psychiatry Neurol. 5, 106–113.PubMedGoogle Scholar
  6. Blennow K., Fredman P., Wallin A., Gottfries C. G., Langstrom L., and Svennerholm L. (1993) Protein analyses in cerebrospinal fluid: I. Influence of concentration gradients for proteins on cerebrospinal fluid/serum albumin ratio.Eur. Neurol. 33, 126–128.PubMedCrossRefGoogle Scholar
  7. Bramblett G. T., Trojanowski J. Q., and Lee V. M. Y. (1992) Regions with abundant neurofibrillary pathology in human brain exhibit a selective reduction in levels of binding-competent τ and accumulation of abnormal τ-isoforms (A68 proteins).Lab. Invest. 66, 212–222.PubMedGoogle Scholar
  8. Coleman P. D. and Flood D. G. (1987) Neuron numbers and dendrite extent in normal aging and Alzheimer’s disease.Neurobiol. Aging 8, 521–545.PubMedCrossRefGoogle Scholar
  9. Davies C. A., Mann D. M. A., Sumpter P. Q., and Yates P. O. (1987) A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease.J. Neurol. Sci. 78, 151–164.PubMedCrossRefGoogle Scholar
  10. Delacourte A., Flament S., Dibe E. M., Hublau P., Sablonniére B., Hémon B., Shérrer V., and Défossez A. (1990) Pathological proteins tau 64 and 69 are specifically expressed in the somatodendritic domain of the degenerating cortical neurons during Alzheimer’s disease.Acta Neuropathol. 80, 111–117.PubMedCrossRefGoogle Scholar
  11. Dewar D., Graham D. I., Teasdale G. M., and McCulloch J. (1994) Cerebral ischemia induces alterations in tau and ubiquitin proteins.Dementia 5, 168–173.PubMedGoogle Scholar
  12. Folstein M., Folstein S., and McHugh P. (1975) “Mini-Mental State” A practical method for grading the cognitive state of patients for the clinician.J. Psychiatr. Res. 12, 189–198.PubMedCrossRefGoogle Scholar
  13. Garver T. D., Harris K. A., Lehman R. A. W., Lee V. M. Y., Trojanowski J. Q., and Billingsley M. L. (1994) τ phosphorylation in human, primate, and rat brain: evidence that a pool of τ is highly phosphorylated in vivo and is rapidly dephosphorylated in vitro.J. Neurochem. 63, 2279–2287.PubMedCrossRefGoogle Scholar
  14. Ghanbari H. A., Kozuk T., Miller B. E., and Riesing S. (1990) A sandwich enzyme immunoassay for detecting and measuring Alzheimer’s disease-associated proteins in human brain tissue.J. Clin. Lab. Anal. 4, 189–192.PubMedCrossRefGoogle Scholar
  15. Goedert M., Wischik C. M., Crowther R. A., Walker J. E., and Klug A. (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau.Proc. Natl. Acad. Sci. USA 85, 4051–4055.PubMedCrossRefGoogle Scholar
  16. Goedert M., Spillantini M., and Jakes R. (1991) Localization of the Alz-50 epitope in recombinant human microtubule-associated protein tau.Neurosci. Lett. 126, 149–154.PubMedCrossRefGoogle Scholar
  17. Goedert M. (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease.Trends Neurosci. 16, 460–465.PubMedCrossRefGoogle Scholar
  18. Goedert M., Jakes R., Crowther A., Cohen P., Vanmechelen E., Vandermeeren M., and Cras P. (1994) Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer’s disease: identification of phosphorylation sites in tau protein.Biochem. J. 301, 871–877.PubMedGoogle Scholar
  19. Greenberg S. G. and Davies P. (1990) A preparation of Alzheimer paired helical filaments that displays distinct → proteins by polyacrylamide gel electrophoresis.Proc. Natl. Acad. Sci. USA 87, 5827–5831.PubMedCrossRefGoogle Scholar
  20. Grundke-Iqbal I., Iqbal K., Tung Y. C., Quinlan M., Wisniewski H. M., and Binder L. I. (1986) Abnormal phosphorylation of the microtubule-associated protein → (tau) in Alzheimer cytoskeletal pathology.Proc. Natl. Acad. Sci. USA 83, 4913–4917.PubMedCrossRefGoogle Scholar
  21. Gustafson L. (1987) Frontal lobe degeneration of non-Alzheimer type. 2. Clinical picture and differential diagnosis.Arch. Gerontol. Geriatr. 6, 209–223.PubMedCrossRefGoogle Scholar
  22. Hamos J. E., DeGennaro L. J., and Drachman D. A. (1989) Synaptic loss in Alzheimer’s disease and other dementias.Neurology 39, 355–361.PubMedGoogle Scholar
  23. Harrington C. R., Mukeatova-Ladinska E. B., Hills R., Edwards P. C., de Garcini E. M., Novak M., and Wischik C. M. (1991) Measurement of distinct immunochemical presentations of tau protein in Alzheimer disease.Proc. Natl. Acad. Sci. USA 88, 5842–5846.PubMedCrossRefGoogle Scholar
  24. Harrington C. R., Perry R. H., Perry E. K., Hurt J., McKeith I. G., Roth M., and Wischik C. M. (1994) Senile dementia of Lewy Body-type and Alzheimer type are biochemically distinct in terms of paired helical filaments and hyperphosphorylated tau protein.Dementia 5, 215–218.PubMedGoogle Scholar
  25. Hyman B. T., van Hoesen G. W., Wolozin B. L., Davies P., Kromer L. J., and Damosio A. R. (1988) Alz-50 antibody recognizes Alzheimer-related neuronal changes.Ann. Neurol. 23, 371–379.PubMedCrossRefGoogle Scholar
  26. Ihara Y., Nukina N., Miura R., and Ogawara M. (1986) Phosphorylated tauprotein is integrated into paired helical filaments in Alzheimer’s disease.J. Biochem. 99, 1807–1810.PubMedGoogle Scholar
  27. International Federation of Clinical Chemistry (IFCC) (1987) Approved recommentation on the theory of reference values, Part 5. Statistical treatment of collected reference values. Determination of reference limits.Clin. Chim. Acta 170, 13–32.CrossRefGoogle Scholar
  28. Katzman R. (1986) Alzheimer’s disease.N. Engl. J. Med. 314, 964–973.PubMedCrossRefGoogle Scholar
  29. Khatoon S., Grundke-Iqbal I., and Iqbal K. (1992) Brain levels of microtubule-associated protein → are elevated in Alzheimer’s disease: a radioimmunoslot-blot assay for nanograms of the protein.J. Neurochem. 59, 750–753.PubMedCrossRefGoogle Scholar
  30. Langston J. W., Widner H., Goetz C. G., Brooks D., Fahn S., Freeman T., and Watts R. (1992) Core assessment program for intracerebral transplantations (CAPIT).Mov. Disord. 7, 2–13.PubMedCrossRefGoogle Scholar
  31. Lishman W. A. (1987)Organic Psychiatry: the Psychological Consequences of Cerebral Disorder. 2nd ed. Chicago, Year Book Medical Publishers.Google Scholar
  32. Matsuo E., Shin R.-W., Billingsley M. L., Van de Voorde A., O’Connor M., Trojanowski J., and Lee V.-M. (1994) Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau.Neuron 13, 989–1002.PubMedCrossRefGoogle Scholar
  33. McKhann G., Drachman D., Folstein M., Katzman R., Price D., and Stadlan E. M. (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of department of health and human services task force on Alzheimer’s disease.Neurology 34, 939–944.PubMedGoogle Scholar
  34. Mehta P. H., Thal L., and Wisniewski H. M., et al. (1985) Paired helical filaments antigen in CSF. (letter)Lancet II 35.Google Scholar
  35. Mercken M., Vandermeeren M., Lübke U., Six J., Boons J., van der Voorde A., Martin J. J., and Gheuens J. (1992) Monoclonal antibodies with selective specificity for Alzheimer tau are directed against phosphatase-sensitive epitopes.Acta Neuropathol. 84, 265–272.PubMedCrossRefGoogle Scholar
  36. Mori H., Kondo J., and Ihara Y. (1987) Ubiquitin is a component of paired helical filaments in Alzheimer’s disease.Science 235, 1641–1644.PubMedCrossRefGoogle Scholar
  37. Morishima-Kawashima M., Hasegawa M., Takio K., Suzuki M., Yoshida H., Titani K., and Ihara Y. (1995) Proline-directed and non-proline-directed phosphorylation of PHF-tau.J. Biol. Chem. 270, 823–829.PubMedCrossRefGoogle Scholar
  38. Mukaetova-Ladinska E. B., Harrington C. R., Hills R., O’Sullivan A., Roth M., and Wischik C. M. (1992) Regional distribution of paired helical filaments and normal tau proteins in aging and in Alzheimer’s disease with and without temporal lobe involvement.Dementia 3, 61–69.Google Scholar
  39. Oyama F., Shimada H., Oyama R., Titani K., and Ihara Y. (1991) Differential expression of β amyloid protein precursor (APP) and tau mRNA in the aged human brain: individual variability and correlation between APP-751 and four-repeat tau.J. Neuropathol. Exp. Neurol. 50, 560–578.PubMedCrossRefGoogle Scholar
  40. Perry G., Friedman R., Shaw G., and Chau V. (1987) Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains.Proc. Natl. Acad. Sci. USA 84, 3033–3036.PubMedCrossRefGoogle Scholar
  41. Scheltens P., Vermersch P., and Leys D. (1993) Hétérogénéité de la maladie d’Alzheimer.Rev. Neurol. (Paris) 149, 14–25.Google Scholar
  42. Sjögren T., Sjögren H., and Lindgren Å. (1952) Morbus Alzheimer and morbus Pick: A genetic, clinical and patho-anatomical study.Acta Psych. Neurol. Scand. (Suppl. 82) 66–115.Google Scholar
  43. Szendrei G., Lee V.-M., and Otvos L. (1993) Recognition of the minimal epitope of monoclonol antibody Tau-1 depends upon the presence of a phosphate group but not its localization.J. Neurosci. Res. 34, 243–249.PubMedCrossRefGoogle Scholar
  44. Thompson E. J. (1988)The CSF Proteins: A Biomedical Approach. Elsevier, Amsterdam, pp. 9–26.Google Scholar
  45. Tibbling G., Link H., and Öhman S. (1977) Principles of albumin and IgG analysis in neurological disorders. I. Establishment of reference values.Scand. J. Clin. Lab. Invest. 37, 385–390.PubMedCrossRefGoogle Scholar
  46. Tomlinson B. E., Blessed G., and Roth M. (1968) Observations of the brans of non-demented old people.J. Neurol. Sci. 7, 331–356.PubMedCrossRefGoogle Scholar
  47. Tomlinson B. E., Blessed G., and Roth M. (1968) Observations of the brains of demented old people.J. Neurol. Sci. 11, 205–242.CrossRefGoogle Scholar
  48. Tomlinson B. E. and Corsellis J. A. N. (1984)Ageing and the dementias, inGreenfield’s Neuropathology (Hume Adams J., Corsellis J. A. N., and Duchen L. W., eds., Edward Arnold, London, pp. 951–1025.Google Scholar
  49. Vandermeeren M., Mercken M., Vanmechelen E., Six J., Van de Voorde A., Martin J. J., and Cras P. (1993) Detection of → proteins in normal and Alzheimer’s disease cerebrospinal fluid with a sensitive sandwich enzymelinked immunosorbent assay.J. Neurochem. 61, 1828–1834.PubMedCrossRefGoogle Scholar
  50. Wallin A., Gottfries C. G., Karlsson I., and Svennerholm L. (1989) Decreased myelin lipids in Alzheimer’s disease and vascular dementia.Acta Neurol. Scand. 80, 319–323.PubMedCrossRefGoogle Scholar
  51. Wallin A. and Blennow K. (1991) The pathogenetic basis of vascular dementia.Alzheimer Dis. Assoc. Disord. 5, 91–102.PubMedCrossRefGoogle Scholar
  52. Wallin A., Blennow K., and Scheltens P. (1994) Research criteria for clinical diagnosis of “pure” Alzheimer’s disease.Drugs Today 30, 265–273.Google Scholar
  53. Wang G. P., Iqbal K., Bucht G., Winblad B., Wisniewski H. M., and Grundke-Iqbal I. (1991) Alzheimer’s disease: paired helical filament immunoreactivity in cerebrospinal fluid.Acta Neuropathol. (Berl.) 82, 6–12.CrossRefGoogle Scholar
  54. Wisniewski K., George A. J., Moretz R. C., and Wisniewski H. M. (1979) Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia.Ann. Neurol. 5, 288–294.PubMedCrossRefGoogle Scholar
  55. Wolozin B. and Davies P. (1987) Alzheimer-related neuronal protein A68: specificity and distribution.Ann. Neurol. 22, 521–526.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1995

Authors and Affiliations

  • K. Blennow
    • 1
  • A. Wallin
    • 2
  • H. Ågren
    • 2
  • C. Spenger
    • 3
  • J. Siegfried
    • 4
  • E. Vanmechelen
    • 5
  1. 1.Department of Clinical Neuroscience Unit of NeurochemistryUniversity of Göteborg, Mölndal HospitalMölndalSweden
  2. 2.Unit of PsychiatryUniversity of Göteborg, Mölndal HospitalMölndalSweden
  3. 3.Department of NeurosurgeryUniversity of BernSwitzerland
  4. 4.Klinik im ParkZürichSwitzerland
  5. 5.Innogenetics N.V.GhentBelgium

Personalised recommendations