Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Interfacial drag and the growth of martensite

  • 266 Accesses

  • 15 Citations

Abstract

A new model for the growth of massive-martensite in Fe−Ni−C alloys is presented and predictions from it are compared with the results of hot-stage metallographic experiments on five Fe-10 Ni−C alloys. The comparison involves six steps: 1) Development of a specific model of the interface for a particular crystallography. The single array of parallel dislocations calculated for this interface is compatible in every way with the requirements of the crystallographic theories; 2) calculation of the elastic interaction energy between the strain fields of dissolved carbon atoms in the martensite lattice and the stress field of the dislocation array in the interface; 3) development of diffusion models for the drag force created by this interaction on a moving interface during the formation of the martensite phase; 4) establishment of a balance of forces at the moving interface; 5) prediction of growth rates of the product; and 6) comparison of these predictions with the experimental data. The rate of growth of the product and its strong dependence on carbon concentration can both be explained if it is assumed that the rate controlling mechanism for isothermal growth is the drag caused by the movement of Cotrell atmospheres with the migrating interface. The Zener-Hillert model for growth control by the diffusion of carbon away from the tip of a growing martensite plate is shown to be incorrect in principle because it ignores the geometrical prerequisites of the transformation. In the present model growth is controlled by the sidewise movement of the planar transformation interface, and length growth is a geometrical consequence of this motion. This view is supported by the observation that the activation enthalpies for length and width growth in these alloys are almost identical. Possible improvements to the model are discussed, and their predicted effects on the results are indicated.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. F. Bunshah and R. F. Mehl:Trans. AIME: 1953, vol. 125, p. 125.

  2. 2.

    G. V. Kurdjumov and O. P. Maximova:Dokl. Acad. Nauk. SSSR, 1948, vol. 61, p. 83.

  3. 3.

    R. B. G. Yeo:Trans. ASM, 1964, vol. 57, p. 48.

  4. 4.

    J. M. Marder and A. R. Marder:Trans. ASM, 1969, vol. 62, p. 1.

  5. 5.

    W. S. Owen, F. A. Wilson, and T. Bell:High-Strength Materials, V. Zackay, ed., p. 167, Wiley, New York, 1965.

  6. 6.

    M. M. Rao and P. G. Winchell:Trans. TMS-AIME, 1967, vol. 239, p. 956.

  7. 7.

    R. H. Goodenow, S. J. Matas, and R. F. Hehemann:Trans. TMS-AIME, 1963, vol. 227, p. 651.

  8. 8.

    H. I. Aaronson:The Mechanism of Phase Transformations in Crystalline Solids, Iron Steel Inst. Monograph No. 33, p. 270, 1968.

  9. 9.

    D. N. Shackleton and P. M. Kelly:The Physical Properties of Martensite and Bainite, Iron Steel Inst. Special Report 93, p. 93, 1965, andActa Met., 1968. vol. 16, p. 609.

  10. 10.

    G. R. Srinivasan and C. M. Wayman:Acta. Met., 1968, vol. 16, p. 609.

  11. 12.

    K. J. Irving and F. P. Pickering:J. Iron Steel Inst., 1958, vol. 188, p. 101.

  12. 12.

    P. Vasudevan, L. W. Graham and H. J. Axon:J. Iron Steel Inst., 1958, vol. 190, p. 386.

  13. 13.

    S. V. Radeliffe and E. C. Rollason:J. Iron Steel Inst., 1959, vol. 191, p. 56.

  14. 14.

    R. H. Goodenow and R. F. Hehemann:Trans. TMS-AIME, 1965, vol. 233, p. 1777.

  15. 15.

    J. W. Christian:The Theory of Transformations in Metals and Alloys, Chap. XXI. Pergamon, New York, 1965.

  16. 16.

    J. W. Christian:The Physical Properties of Martensite and Bainite, Iron Steel Inst. Special Report 93, p. 1, 1965.

  17. 17.

    R. Bullough and B. A. Bilby:Proc. Phys. Soc., 1956, vol. 69, p. 1276.

  18. 18.

    P. G. Winchell: Purdue University, Lafayette, Indiana, private communication, 1968.

  19. 19.

    F. C. Frank:Acta Met., 1953, vol. 1, p. 15.

  20. 20.

    W. S. Owen, F. J. Schoen and G. R. Srinivasan:Phase Transformations, p. 157, A.S.M., Cleveland, 1970.

  21. 21.

    F. J. Schoen: Ph.D. Thesis Cornell University, 1970.

  22. 22.

    A. F. Acton and M. Bevis:Mater. Sci. Eng., 1969, vol. 5, p. 19.

  23. 23.

    N. D. H. Ross and A. Crocker:Acta. Met., 1970, vol. 18, p. 1405.

  24. 24.

    J. W. Christian:Decomposition of Austenite by Diffusional Processes, V. Zackay and H. I. Aaronson, eds., p. 371, Interscience, New York, 1963.

  25. 25.

    S. A. Kulin and M. Cohen:Trans. AIME, 1950, vol. 188, p. 1139.

  26. 26.

    G. R. Speich and P. R. Swann:J. Iron Steel Inst., 1965, vol. 203, p. 450.

  27. 27.

    G. R. Speich and H. Warlimont:J. Iron Steel Inst., 1968, vol. 206, p. 385.

  28. 28.

    J. S. Pascover and S. V. Radcliffe:Trans. TMS-AIME, 1968, vol. 242, p. 673.

  29. 29.

    M. S. Wechsler, T. A. Read and D. S. Lieberman:Trans. TMS-AIME, 1960, vol. 218, p. 202.

  30. 30.

    F. J. Schoen and W. S. Owen: unpublished research, April, 1971.

  31. 31.

    A. H. Cottrell and M. A. Jaswon:Proc. Roy. Soc., 1949, vol. A199, p. 104.

  32. 32.

    J. Snoek:Physics, 1941, vol. 8, p. 711.

  33. 33.

    G. Schoeck and A. Seeger,Acta. Met., 1959, vol. 7, p. 469.

  34. 34.

    A. H. Cottrell and B. A. Bilby:Proc. Phys. Soc., 1949, vol. 62, p. 49.

  35. 35.

    F. J. Schoen and W. S. Owen: unpublished research, April, 1971.

  36. 36.

    J. W. Cahn:Acta. Met., 1962, vol. 10, p. 789.

  37. 37.

    M. M. Rao, R. J. Russell and P. G. Winchell:Trans. TMS-AIME, 1962, vol. 239, p. 634.

  38. 38.

    C. L. Magee: Ph.D. Thesis, Carnegie Institute of Technology, 1966.

  39. 39.

    A. J. Goldman and W. D. Robertson:Acta. Met., 1965, vol. 13, p. 391.

  40. 40.

    E. Breinan: Ph.D. Thesis, Rensselaer Polytechnic Institute, 1967.

  41. 41.

    F. J. Schoen and W. S. Owen:Metallography, 1970, vol. 3, p. 473.

  42. 42.

    S. Dash and N. Brown:Acta. Met., 1966, vol. 14, p. 595.

  43. 43.

    G. R. Speich:Decomposition of Austenite by Diffusional Processes, V. Zackay and H. I. Aaronson, eds., p. 353, Interscience, New York, 1963.

  44. 44.

    G. R. Speich and M. Cohen:Trans. TMS-AIME, 1960, vol. 218, p. 150.

  45. 45.

    R. H. Goodenow and R. F. Hehemann:Decomposition of Austenite by Diffusional Processes, V. Zackay and H. I. Aaronson, eds. p. 367, Interscience, New York, 1963.

  46. 46.

    R. H. Goodenow: M.S. Thesis, Case Institute of Technology, 1961.

  47. 47.

    L. Kaufman, S. V. Radcliffe, and M. Cohen:Decomposition of Austenite by Diffusional Processes, V. Zackay and H. E. Aaronson, eds. p. 313, Interscience, New York, 1963.

  48. 48.

    K. Koliwad and H. H. Hohnson: Cornell University, Ithaca, New York, unpublished research, January, 1970.

  49. 49.

    A. J. Bosman, P. E. Brammer, L. C. H. Eijkelenboom, C. J. Schinkel and G. W. Rathenau:Physica, 1960, vol. 26, p. 533.

  50. 50.

    J. Bass and D. Lazarus:J. Phys. Solids, 1962, vol. 23, p. 1820.

Download references

Author information

Correspondence to F. J. Schoen.

Additional information

F. J. SCHOEN, formerly with Department of Materials Science and Engineering, Cornell University, Ithaca, N.Y.

W.S. Owen, formerly Chairman, Department of Materials Science and Engineering, Cornell University.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schoen, F.J., Owen, W.S. Interfacial drag and the growth of martensite. Metallurgical Transaction 2, 2431–2442 (1971). https://doi.org/10.1007/BF02814880

Download citation

Keywords

  • Diffusion Coefficient Profile