Advertisement

Metallurgical Transactions

, Volume 2, Issue 9, pp 2431–2442 | Cite as

Interfacial drag and the growth of martensite

  • F. J. Schoen
  • W. S. Owen
Invited Papers from Symposium on the Formation of Martensite in Iron Alloys

Abstract

A new model for the growth of massive-martensite in Fe−Ni−C alloys is presented and predictions from it are compared with the results of hot-stage metallographic experiments on five Fe-10 Ni−C alloys. The comparison involves six steps: 1) Development of a specific model of the interface for a particular crystallography. The single array of parallel dislocations calculated for this interface is compatible in every way with the requirements of the crystallographic theories; 2) calculation of the elastic interaction energy between the strain fields of dissolved carbon atoms in the martensite lattice and the stress field of the dislocation array in the interface; 3) development of diffusion models for the drag force created by this interaction on a moving interface during the formation of the martensite phase; 4) establishment of a balance of forces at the moving interface; 5) prediction of growth rates of the product; and 6) comparison of these predictions with the experimental data. The rate of growth of the product and its strong dependence on carbon concentration can both be explained if it is assumed that the rate controlling mechanism for isothermal growth is the drag caused by the movement of Cotrell atmospheres with the migrating interface. The Zener-Hillert model for growth control by the diffusion of carbon away from the tip of a growing martensite plate is shown to be incorrect in principle because it ignores the geometrical prerequisites of the transformation. In the present model growth is controlled by the sidewise movement of the planar transformation interface, and length growth is a geometrical consequence of this motion. This view is supported by the observation that the activation enthalpies for length and width growth in these alloys are almost identical. Possible improvements to the model are discussed, and their predicted effects on the results are indicated.

Keywords

Diffusion Coefficient Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. Bunshah and R. F. Mehl:Trans. AIME: 1953, vol. 125, p. 125.Google Scholar
  2. 2.
    G. V. Kurdjumov and O. P. Maximova:Dokl. Acad. Nauk. SSSR, 1948, vol. 61, p. 83.Google Scholar
  3. 3.
    R. B. G. Yeo:Trans. ASM, 1964, vol. 57, p. 48.Google Scholar
  4. 4.
    J. M. Marder and A. R. Marder:Trans. ASM, 1969, vol. 62, p. 1.Google Scholar
  5. 5.
    W. S. Owen, F. A. Wilson, and T. Bell:High-Strength Materials, V. Zackay, ed., p. 167, Wiley, New York, 1965.Google Scholar
  6. 6.
    M. M. Rao and P. G. Winchell:Trans. TMS-AIME, 1967, vol. 239, p. 956.Google Scholar
  7. 7.
    R. H. Goodenow, S. J. Matas, and R. F. Hehemann:Trans. TMS-AIME, 1963, vol. 227, p. 651.Google Scholar
  8. 8.
    H. I. Aaronson:The Mechanism of Phase Transformations in Crystalline Solids, Iron Steel Inst. Monograph No. 33, p. 270, 1968.Google Scholar
  9. 9.
    D. N. Shackleton and P. M. Kelly:The Physical Properties of Martensite and Bainite, Iron Steel Inst. Special Report 93, p. 93, 1965, andActa Met., 1968. vol. 16, p. 609.Google Scholar
  10. 10.
    G. R. Srinivasan and C. M. Wayman:Acta. Met., 1968, vol. 16, p. 609.CrossRefGoogle Scholar
  11. 12.
    K. J. Irving and F. P. Pickering:J. Iron Steel Inst., 1958, vol. 188, p. 101.Google Scholar
  12. 12.
    P. Vasudevan, L. W. Graham and H. J. Axon:J. Iron Steel Inst., 1958, vol. 190, p. 386.Google Scholar
  13. 13.
    S. V. Radeliffe and E. C. Rollason:J. Iron Steel Inst., 1959, vol. 191, p. 56.Google Scholar
  14. 14.
    R. H. Goodenow and R. F. Hehemann:Trans. TMS-AIME, 1965, vol. 233, p. 1777.Google Scholar
  15. 15.
    J. W. Christian:The Theory of Transformations in Metals and Alloys, Chap. XXI. Pergamon, New York, 1965.Google Scholar
  16. 16.
    J. W. Christian:The Physical Properties of Martensite and Bainite, Iron Steel Inst. Special Report 93, p. 1, 1965.Google Scholar
  17. 17.
    R. Bullough and B. A. Bilby:Proc. Phys. Soc., 1956, vol. 69, p. 1276.CrossRefGoogle Scholar
  18. 18.
    P. G. Winchell: Purdue University, Lafayette, Indiana, private communication, 1968.Google Scholar
  19. 19.
    F. C. Frank:Acta Met., 1953, vol. 1, p. 15.CrossRefGoogle Scholar
  20. 20.
    W. S. Owen, F. J. Schoen and G. R. Srinivasan:Phase Transformations, p. 157, A.S.M., Cleveland, 1970.Google Scholar
  21. 21.
    F. J. Schoen: Ph.D. Thesis Cornell University, 1970.Google Scholar
  22. 22.
    A. F. Acton and M. Bevis:Mater. Sci. Eng., 1969, vol. 5, p. 19.CrossRefGoogle Scholar
  23. 23.
    N. D. H. Ross and A. Crocker:Acta. Met., 1970, vol. 18, p. 1405.CrossRefGoogle Scholar
  24. 24.
    J. W. Christian:Decomposition of Austenite by Diffusional Processes, V. Zackay and H. I. Aaronson, eds., p. 371, Interscience, New York, 1963.Google Scholar
  25. 25.
    S. A. Kulin and M. Cohen:Trans. AIME, 1950, vol. 188, p. 1139.Google Scholar
  26. 26.
    G. R. Speich and P. R. Swann:J. Iron Steel Inst., 1965, vol. 203, p. 450.Google Scholar
  27. 27.
    G. R. Speich and H. Warlimont:J. Iron Steel Inst., 1968, vol. 206, p. 385.Google Scholar
  28. 28.
    J. S. Pascover and S. V. Radcliffe:Trans. TMS-AIME, 1968, vol. 242, p. 673.Google Scholar
  29. 29.
    M. S. Wechsler, T. A. Read and D. S. Lieberman:Trans. TMS-AIME, 1960, vol. 218, p. 202.Google Scholar
  30. 30.
    F. J. Schoen and W. S. Owen: unpublished research, April, 1971.Google Scholar
  31. 31.
    A. H. Cottrell and M. A. Jaswon:Proc. Roy. Soc., 1949, vol. A199, p. 104.CrossRefGoogle Scholar
  32. 32.
    J. Snoek:Physics, 1941, vol. 8, p. 711.Google Scholar
  33. 33.
    G. Schoeck and A. Seeger,Acta. Met., 1959, vol. 7, p. 469.CrossRefGoogle Scholar
  34. 34.
    A. H. Cottrell and B. A. Bilby:Proc. Phys. Soc., 1949, vol. 62, p. 49.Google Scholar
  35. 35.
    F. J. Schoen and W. S. Owen: unpublished research, April, 1971.Google Scholar
  36. 36.
    J. W. Cahn:Acta. Met., 1962, vol. 10, p. 789.CrossRefGoogle Scholar
  37. 37.
    M. M. Rao, R. J. Russell and P. G. Winchell:Trans. TMS-AIME, 1962, vol. 239, p. 634.Google Scholar
  38. 38.
    C. L. Magee: Ph.D. Thesis, Carnegie Institute of Technology, 1966.Google Scholar
  39. 39.
    A. J. Goldman and W. D. Robertson:Acta. Met., 1965, vol. 13, p. 391.CrossRefGoogle Scholar
  40. 40.
    E. Breinan: Ph.D. Thesis, Rensselaer Polytechnic Institute, 1967.Google Scholar
  41. 41.
    F. J. Schoen and W. S. Owen:Metallography, 1970, vol. 3, p. 473.CrossRefGoogle Scholar
  42. 42.
    S. Dash and N. Brown:Acta. Met., 1966, vol. 14, p. 595.CrossRefGoogle Scholar
  43. 43.
    G. R. Speich:Decomposition of Austenite by Diffusional Processes, V. Zackay and H. I. Aaronson, eds., p. 353, Interscience, New York, 1963.Google Scholar
  44. 44.
    G. R. Speich and M. Cohen:Trans. TMS-AIME, 1960, vol. 218, p. 150.Google Scholar
  45. 45.
    R. H. Goodenow and R. F. Hehemann:Decomposition of Austenite by Diffusional Processes, V. Zackay and H. I. Aaronson, eds. p. 367, Interscience, New York, 1963.Google Scholar
  46. 46.
    R. H. Goodenow: M.S. Thesis, Case Institute of Technology, 1961.Google Scholar
  47. 47.
    L. Kaufman, S. V. Radcliffe, and M. Cohen:Decomposition of Austenite by Diffusional Processes, V. Zackay and H. E. Aaronson, eds. p. 313, Interscience, New York, 1963.Google Scholar
  48. 48.
    K. Koliwad and H. H. Hohnson: Cornell University, Ithaca, New York, unpublished research, January, 1970.Google Scholar
  49. 49.
    A. J. Bosman, P. E. Brammer, L. C. H. Eijkelenboom, C. J. Schinkel and G. W. Rathenau:Physica, 1960, vol. 26, p. 533.CrossRefGoogle Scholar
  50. 50.
    J. Bass and D. Lazarus:J. Phys. Solids, 1962, vol. 23, p. 1820.CrossRefGoogle Scholar

Copyright information

© The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., and American Society for Metals 1971

Authors and Affiliations

  • F. J. Schoen
    • 1
  • W. S. Owen
    • 2
  1. 1.Gulf General Atomic Co.San Diego
  2. 2.The Technological InstituteNorthwestern UniversityEvanston

Personalised recommendations