Advertisement

Metallurgical Transactions A

, Volume 16, Issue 5, pp 831–840 | Cite as

Microstructure-mechanical property relationships of dual-phase steel wire

  • A. H. Nakagawa
  • G. Thomas
Mechanical Behaviour

Abstract

The high strain hardening rate and formability of dual-phase steels makes them promising choices for drawing into high strength wire. As the fundamental part of an alloy design project, dual-phase steels with several different martensite volume fractions, particle shapes, particle sizes, compositions, and crystallographic relations with the ferrite matrix were studied. They were wire drawn with true strains of up to 6.1. The initial microstructure, void formation tendency, drawability, and mechanical properties of the various steels were compared and correlated. The Fe-2Si-0.1C alloy was found to be the most promising with a suggested reduction in the carbon level to 0.06 to 0.08 pct. The double heat treatment which consists of quenching from austenite to martensite followed by intercritical annealing and quenching produced the best microstructure for drawing into wire. The annealing temperature should be adjusted to yield 25 to 30 vol pct martensite in the final microstructure. Stress relief after drawing provided a substantial increase in ductility without significant loss in strength.

Keywords

Ferrite Austenite Martensite Metallurgical Transaction Wire Drawing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Hayami and T. Furukawa:Microalloying 75, Union Carbide Corp., New York, NY, 1977, pp. 311–21.Google Scholar
  2. 2.
    J.Y. Koo and G. Thomas:Mater. Sci. & Eng., 1976, vol. 24, pp. 187–98.CrossRefGoogle Scholar
  3. 3.
    M. S. Rashid: SAE Preprint 760206, G.M. Corp., Warren, MI, 1976.Google Scholar
  4. 4.
    Formable HSLA and Dual-Phase Steels, A. T. Davenport, ed., TMS- AIME, Warrendale, PA, 1979.Google Scholar
  5. 5.
    Dual Phase and Cold Pressing Vanadium Steels in the Automobile Industry, Vanitec, Berlin, W. Germany, 1978.Google Scholar
  6. 6.
    Structure and Properties of Dual-Phase Steels, R. A. Kot and J. W. Morris, eds., TMS-AIME, Warrendale, PA, 1979.Google Scholar
  7. 7.
    Fundamentals of Dual-Phase Steels, R. A. Kot and B.L. Bramfitt, eds., TMS-AIME, Warrendale, PA, 1981.Google Scholar
  8. 8.
    Metallurgy of Continuous-Annealed Sheet Steel, B. L. Bramfitt and P. L. Mangonon, Jr., eds., TMS-AIME, Warrendale, PA, 1982.Google Scholar
  9. 9.
    M.S. Rashid and E. R. Cprek: ASTM STP 647, ASTM, Philadelphia, PA, 1978, pp. 174–90.Google Scholar
  10. 10.
    N.J. Kim and G. Thomas: “Steels for Line-Pipe”, Int. Conf. 1981, London, Metals Society, London, 1983, pp. 121–24.Google Scholar
  11. 11.
    D.A. Korzekwa, R. D. Lawson, D.K. Matlock, and G. Krauss:Scripta Met., 1980, vol. 14, pp. 1023–28.CrossRefGoogle Scholar
  12. 12.
    J.Y. Koo and G. Thomas:Metall. Trans. A, 1977, vol. 8A, pp. 525–28.Google Scholar
  13. 13.
    N.J. Kim and G. Thomas:Metall. Trans. A, 1981, vol. 12A, pp. 483–89.Google Scholar
  14. 14.
    J. A. Wasynczuk, R. O. Ritchie, and G. Thomas:Mater. Sci. & Eng., 1984, vol. 62, pp. 79–92.CrossRefGoogle Scholar
  15. 15.
    G. Langford, P.K. Nagata, R.J. Sober, and W.C. Leslie:Metall. Trans., 1972, vol. 3, pp. 1843–49.CrossRefGoogle Scholar
  16. 16.
    E. C. Bain and H.W. Paxton:Alloying Elements in Steel, 2nd ed., ASM, Metals Park, OH, 1966.Google Scholar
  17. 17.
    J. McMahon and G. Thomas:Proc. 3rd Intl. Conf. on Strength and Alloys, 1973, vol. 1, pp. 180–83.Google Scholar
  18. 18.
    J. D. Embury, A. S. Keh, and R. M. Fisher:Trans. TMS-AIME, 1966, vol. 236, pp. 1252–60.Google Scholar
  19. 19.
    G. Langford:Metall. Trans., 1970, vol. 1, pp. 465–77.Google Scholar
  20. 20.
    A. S. Argon, J. Im, and R. Safoglu:Metall. Trans. A, 1975, vol. 6A, pp. 825–37.Google Scholar
  21. 21.
    J.R. Fisher and J. Gurland:Met. Sci., 1981, vol. 15, pp. 193–202.Google Scholar
  22. 22.
    N. J. Kim, A. H. Nakagawa, and G. Thomas: University of Wyoming, Laramie, WY, and University of California, Berkeley, CA, un- published research, 1983.Google Scholar
  23. 23.
    A. R. Marder and G. Krauss:Trans. ASM, 1967, vol. 60, pp. 651–60.Google Scholar
  24. 24.
    J.I. Kim, C.K. Syn, and J. W. Morris, Jr.:Metall. Trans. A, 1983, vol. 14A, pp. 93–103.Google Scholar
  25. 25.
    J.Y. Koo and G. Thomas: 35th Annual Proc. of EMS A, 1975, pp. 118–19.Google Scholar
  26. 26.
    W.T. Read, Jr.:Dislocations in Crystals, McGraw-Hill, New York, NY, 1953.Google Scholar
  27. 27.
    A. F. Szewczyk and J. Gurland:Metall. Trans. A, 1982, vol. 13A, pp. 1821–26.Google Scholar
  28. 28.
    G. E. Dieter, Jr.:Mechanical Metallurgy, 2nd ed., McGraw-Hill, Ne w York, NY, 1976.Google Scholar
  29. 29.
    G. R. Speich and R. L. Miller:Structure and Properties of Dual-Phase Steels, R. A. Kot and J.W. Morris, eds., TMS-AIME, Warrendale, PA, 1979, pp. 145–82.Google Scholar
  30. 30.
    F. A. McClintock:J. Appl. Mech., 1968, vol. 35, pp. 363–67.Google Scholar
  31. 31.
    N. P. Suh and A. P. L. Turner:Elements of the Mechanical Behavior of Solids, McGraw-Hill, New York, NY, 1975.Google Scholar
  32. 32.
    M.R. Plichta and H.I. Aaronson:Metall. Trans., 1974, vol. 5, pp. 2611–13.CrossRefGoogle Scholar

Copyright information

© The Metallurgical Society of American Institute of Mining 1985

Authors and Affiliations

  • A. H. Nakagawa
    • 1
  • G. Thomas
    • 2
    • 3
  1. 1.Engineering Technology DepartmentWestinghouse Electric CorporationSunnyvale
  2. 2.Department of Materials Science and Mineral EngineeringUniversity of CaliforniaBerkeley
  3. 3.Lawrence Berkeley LaboratoryNational Center for Electron MicroscopyBerkeley

Personalised recommendations