Folia Microbiologica

, Volume 41, Issue 2, pp 165–174

Purification and properties of two forms of glucoamylase fromAspergillus niger

  • A. -A. Amirul
  • S. L. Khoo
  • M. N. Nazalan
  • M. S. Razip
  • M. N. Azizan
Papers

Abstract

A. niger produced α-glucosidase, α-amylase and two forms of glucoamylase when grown in a liquid medium containing raw tapioca starch as the carbon source. The glucoamylases, which formed the dominant components of amylolytic activity manifested by the organism, were purified to homogeneity by ammonium sulfate precipitation, ion-exchange and two cycles of gel filtration chromatography. The purified enzymes, designated GA1 and GA2, a raw starch digesting glucoamylase, were found to have molar masses of 74 and 96 kDa and isoelectric points of 3.8 and 3.95, respectively. The enzymes were found to have pH optimum of 4.2 and 4.5 for GA1 and GA2, respectively, and were both stable in a pH range of 3.5–9.0. Both enzymes were thermophilic in nature with temperature optimum of 60 and 65°C, respectively, and were stable for 1 h at temperatures of up to 60°C. The kinetic parametersKm andV showed that with both enzymes the branched substrates, starch and amylopectin, were more efficiently hydrolyzed compared to amylose. GA2, the more active of the two glucoamylases produced, was approximately six to thirteen times more active towards raw starches compared to GA1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azizan M.N., Amirul A.-A., Khoo S.L., Najimudin N., Samian R.: Amylolytic activity ofAspergillus nigervan Tieghem: Effect of carbon and nitrogen sources on enzyme production.Biosci. J.4, 1–11 (1993).Google Scholar
  2. Bajpai P., Bajpai P.K.: High temperature alkaline α-amylase fromBacillus licheniformis TCRDC-B13.Biotechnol. Bioeng.33, 72–78 (1989).CrossRefPubMedGoogle Scholar
  3. Davis B.J.: Disc electrophoresis—II: Method and application to human serum.Ann. N. Y. Acad. Sci.121, 404–427 (1964).PubMedCrossRefGoogle Scholar
  4. Fairbanks G., Steck T.L., Wallach D.F.H.: Electrophoretic analysis of the major polypeptides of human erythrocyte membrane.J. Biol. Chem.10, 2606–2617 (1971).Google Scholar
  5. Flor P.Q., Hayashida S.: Production and characteristics of raw starch-digesting glucoamylase O from a protease-negative, glycosidase-negativeAspergillus awamori var.kawachi mutant.Appl. Env. Microbiol.45, 905–912 (1983).Google Scholar
  6. Fogarty W.M., Kelly C.T.: Amylases, amyloglucosidases and related glucanases, pp. 115–170 inEconomic Microbiology, Vol. 5. Microbial Enzymes and Bioconversions (A.H. Rose, Ed.). Academic Press, London 1980.Google Scholar
  7. Giulian G.G., Moss R.L., Greaser M.: Analytical isoelectric focusing using a high-voltage vertical slab polyacrylamide system.Anal. Biochem.142, 421–436 (1984).PubMedCrossRefGoogle Scholar
  8. Hayashida S., Kunisaki S., Nakao M., Flor P.Q.: Evidence for raw starch affinity site onAspergillus awamori glucoamylase.Agr. Biol. Chem.46, 83–89 (1982).Google Scholar
  9. Howling D.: Mechanisms of starch enzymolysis.Internat. Biodeterior.25, 15–19 (1989).CrossRefGoogle Scholar
  10. Jensen B., Olsen J., Allerman K.: Purification of extracellular enzymes from the thermophylic fungusThermomyces lanuginosus.Can. J. Microbiol.34, 281–223 (1988).Google Scholar
  11. Kanlayakrit W., Ishimatsu K., Nakao M., Hayashida S.: Characteristics of raw-starch-digesting glucoamylase from thermophilicRhizomucor pusillus.J. Ferment. Technol.65, 379–385 (1987).CrossRefGoogle Scholar
  12. Khoo S.L., Amirul A.-A., Kamaruzaman M., Nazalan N., Azizan M.N.: Purification and characterization of α-amylase fromAspergillus flavus.Folia Microbiol.39, 392–398 (1994).CrossRefGoogle Scholar
  13. Laemmli V.C.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature227, 680–685 (1970).PubMedCrossRefGoogle Scholar
  14. Lineback D.R., Russell I.J., Rasmussen C.: Two forms of glucoamylase ofAspergillus niger.Arch. Biochem. Biophys.134, 539–553 (1969).PubMedCrossRefGoogle Scholar
  15. Miah M.N.N., Ueda S.: Multiplicity of glucoamylase ofAspergillus oryzae. Part 2. Enzymatic and physicochemical properties of three forms of glucoamylase.Die Starke29, 235–239 (1977).CrossRefGoogle Scholar
  16. Rudick M.J., Elbein A.D.: Glycoprotein enzymes secreted byA. fumigatus: Purification and properties of α-glucosidase.Arch. Biochem. Biophys.161, 281–290 (1974).CrossRefGoogle Scholar
  17. Saha B.C., Mitsue T., Ueda S.: Glucoamylase produced by submerged culture ofAspergillus oryzae.Starch/Starke31, 307–314 (1979).CrossRefGoogle Scholar
  18. Saha B.C., Ueda S.: Raw starch adsorption, elution and digestion behaviour of glucoamylase ofRhizopus niveus.J. Ferment. Technol.61, 67–72 (1983).Google Scholar
  19. Subrahmanyam A., Mangallan S., Gopalkrishnan K.S.: Amyloglucosidase production byTorula thermophila.Indian J. Exp. Biol.15, 495–496 (1977).PubMedGoogle Scholar
  20. Takahashi T., Tsuchida Y., Irie M.: Purification and some properties of three forms of glucoamylase from aRhizopus species.J. Biochem.84, 1183–1194 (1978).PubMedGoogle Scholar
  21. Takahashi T., Inokuchi N., Irie M.: Purification and characterization of a glucoamylase fromAspergillus saitoi.J. Biochem.89, 125–134 (1981).PubMedGoogle Scholar
  22. Tani Y., Vongsuvankert V., Kumnuanta J.: Raw starch-digestive glucoamylase ofAspergillus sp. N-2 isolated from cassava chips.J. Ferment. Technol.64, 405–410 (1986).CrossRefGoogle Scholar
  23. Tosi L.R.O., Terenzi H.F., Jorge J.A.: Purification and characterization of an extracellular glucoamylase from the thermophilic fungusHumicola grisea var.thermoidea.Can. J. Microbiol.39, 846–852 (1993).CrossRefGoogle Scholar
  24. Ueda S.: Fungal glucoamylase and raw starch digestion.Trend. Biochem. Sci.6, 89–89 (1981).CrossRefGoogle Scholar
  25. Ueda S., Koba Y.: Alcoholic fermentation of raw starch without cooking by using black koji amylase.J. Ferment. Technol.58, 237–242 (1980).Google Scholar
  26. Ueda S., Ohba R., Kano S.: Fractionation of the glucoamylase system from black koji mould and the effects of adding isoamylase and alpha-amylase on amylolysis by the glucoamylase fractions.Die Starke26, 374–378 (1974).CrossRefGoogle Scholar
  27. Ueda S., Zenin T., Monteiro D.A., Park Y.K.: Production of ethanol from raw cassava starch by a nonconventional fermentation method.Biotechnol. Bioeng.23, 291–299 (1981).CrossRefGoogle Scholar
  28. Yamasaki Y., Suzuki Y.: Purification and properties of α-glucosidase and glycoamylase fromLentinus edodes (Berk.)Sing.Agric. Biol. Chem.42, 971–980 (1977).Google Scholar
  29. Yamasaki Y., Suzuki Y., Ozawa J.: Purification and properties of two forms of glucoamylases fromPenicillium oxalicum.Agric. Biol. Chem.41, 755–762 (1977a).Google Scholar
  30. Yamasaki Y., Suzuki Y., Ozawa J.: Three forms of α-glucosidase and a glucoamylase fromAspergillus awamori.Agric. Biol. Chem.41, 2149–2161 (1977b).Google Scholar

Copyright information

© Folia Microbiologica 1996

Authors and Affiliations

  • A. -A. Amirul
    • 1
  • S. L. Khoo
    • 1
  • M. N. Nazalan
    • 1
  • M. S. Razip
    • 1
  • M. N. Azizan
    • 1
  1. 1.School of Biological SciencesUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations