Folia Microbiologica

, Volume 40, Issue 3, pp 257–262 | Cite as

Expression ofEscherichia coli recA andada genes inSaccharomyces cerevisiœ using a vector with geneticin resistance

  • M. Slaninová
  • E. Farkašová
  • M. Chovanec
  • V. Vlčková
  • M. Nälund
  • J. A. P. Henriques
  • J. Brozmanová
Papers

Abstract

Construction ofE. coli-yeast shuttle plasmids containing theneo selection gene is described. The protein-coding regions of theE. coli ada orrecA genes under the control of theADH1 promoter and terminator were ligated into theSphI unique site of pNF2 to produce pMSada and pMSrecA, respectively. The plasmids were used for transformation of the haploid and diploidpso4-1 strains ofS. cerevisiœ and their corresponding wild types. Transformants were obtained by selection for geneticin (G418) resistance. Crude protein samples were extracted from the individual transformants. Both the RecA and Ada proteins were present in all strains containing therecA andada genes on plasmids, respectively. Thus the geneticin selection system was successfully used for the preparation of model, yeast strains.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboussekhra A., Chanet R., Adjiri A., Fabre F.: Semidominant suppressors ofSrs2 helicase mutations ofSaccharomyces cerevisiœ map in theRAD51 gene whose sequence predicts a protein with similarities to prokaryotic RecA proteins.Molec. Cell Biol. 12, 3224–3234 (1992).PubMedGoogle Scholar
  2. Benathen I.A., Beam C.A.: The genetic control of X-ray resistance in budding yeast cells.Radiat. Res. 69, 99–116 (1977).PubMedCrossRefGoogle Scholar
  3. Bishop D.K., Park D., Xu L., Kleckner N.:DMC1: A meiosis specific yeast homolog ofE. coli recA required for recombination, synaptoneal complex formation and cell cycle progression.Cell 69, 439–456 (1992).PubMedCrossRefGoogle Scholar
  4. Bradford M.M.: A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding.Anal. Biochem. 72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  5. Brozmanová J., Kleibl K., Vlčková V., Škorvaga M., Černáková L., Margison G.P.: Expression of theE. coli ada gene in yeast protects against the toxic and mutagenic effects of N-methyl-N′-nitro-N-nitrosoguanidine.Nucl. Acids Res. 18, 331–335 (1990).PubMedCrossRefGoogle Scholar
  6. Burnette N.W.: Electrophoresis transfer of proteins from SDS-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A.Anal. Biochem. 112, 195–203 (1981).PubMedCrossRefGoogle Scholar
  7. Černáková L., Piršel M., Kleibl K., Brozmanová J.: Plasmid construction for transfer of therecA gene fromEscherichia coli toSaccharomyces cerevisiœ usingBal31 digestion.Biológia 44, 297–305 (1989).Google Scholar
  8. Černáková L., Fridrichová I., Piršel M., Kleibl K., Duraj J., Brozmanová J.: Expression of theE. coli recA gene in the yeastS. cerevisiœ.Biochimie 73, 285–288 (1991).PubMedCrossRefGoogle Scholar
  9. Cox M.M.: The RecA protein as a recombinational repair system.Mol. Microbiol. 5, 1295–1299 (1991).PubMedCrossRefGoogle Scholar
  10. Hadfield C., Cashmore A.M., Meacock P.A.: Sequence and expression characteristics of a shuttle chloramphenicol-resistance marker forSaccharomyces cerevisiœ andEscherichia coli.Gene 52, 59–70 (1987).PubMedCrossRefGoogle Scholar
  11. Hanahan D.J.: Studies on transformationE. coli with plasmid.J. Mol. Biol. 166, 557–580 (1983).PubMedCrossRefGoogle Scholar
  12. Hames B.D. Rickwood D.:Gel electrophoresis of proteins. IRL Press, Washington (DC) 1981.Google Scholar
  13. Henriques J.A.P., Brendel M.: The role ofPSO andSNM genes in DNA repair of the yeastSaccharomyces cerevisiœ.Curr. Genet. 18, 387–393 (1990).PubMedCrossRefGoogle Scholar
  14. Hill J., Allan K., Donald G., Griffiths D.E.: DMSO-enhanced whole cell yeast transformation.Nucl. Acids Res. 19, 5791 (1991).PubMedCrossRefGoogle Scholar
  15. Iwaki T., Iwaki A.K., Liem R.K.H., Goldman J.E.: α,β-Crystallin is expressed in non leuticular tissues and accumulates in Alexander's disease brain.Cell 57, 71–78 (1989).PubMedCrossRefGoogle Scholar
  16. Kans J.A., Mortimer R.K.: Nucleotide sequence of theRAD57 gene of theSaccharomyces cerevisiœ.Gene 105, 139–140 (1991).PubMedCrossRefGoogle Scholar
  17. Laemmli U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 380–385 (1970).CrossRefGoogle Scholar
  18. Lindahl T., Sedgwick B., Sekiguchi M., Nakabeppu Y.: Regulation a expression of the adaptive response to alkylating agents.Ann. Rev. Biochem. 57, 133–157 (1988).PubMedCrossRefGoogle Scholar
  19. Margison G.P., Cooper D.P., Brennand J.: Cloning of theE. coli O6-methylguanine and methylphosphotriester methyltransferase gene using a functional DNA repair assay.Nucl. Acids. Res. 13, 1939–1952 (1985).PubMedCrossRefGoogle Scholar
  20. Margison G.P., Brennand J., Ockey G.H., O'Connor P.J.: Complementation of mammalian DNA repair defects by a prokaryotic gene.BioEssays 6, 151–155 (1987).PubMedCrossRefGoogle Scholar
  21. Meira L.B., Fonseca M.B., Averbeck D., Schenberg A.C.G., Henriques J.A.P.: Thepso4-1 mutation reduces spontaneous mitotic gene conversion and reciprocal recombination inSaccharomyces cerevisiœ.Mol. Gen. Genet. 235, 311–316 (1992).PubMedCrossRefGoogle Scholar
  22. Morten J.E.N., Margison G.P.: Increased O6-alkylguaninealkyltransferase activity in chinese hamster V79 cells following selection with chloroethylating agents.Carcinogenesis 9, 45–49 (1988).PubMedCrossRefGoogle Scholar
  23. Naumovski L., Friedberg E.C.: Construction of plasmid vectors that facilitate subcloning and recovery of yeast andEscherichia coli DNA fragments.Gene 22, 203–209 (1983).PubMedCrossRefGoogle Scholar
  24. Samson L.: The suicidal DNA repair methyltransferase of microbes.J. Mol. Microbiol. 6, 825–831 (1992).CrossRefGoogle Scholar
  25. Sassanfar M., Samson L.: Identification and preliminary characterization of an O6-methylguanine DNA repair methyltransferase in the yeastSaccharomyces cerevisiœ.J. Biol. Chem. 265, 20–25 (1990).PubMedGoogle Scholar
  26. Sassanfar M., Dosanjh M.K., Essigmann J.M., Samson L.: Relative efficiencies of the bacterial, yeast, and human DNA methyltransferases for the repair of O6-methylguanine and O4-methylthymine.J. Biol. Chem. 266, 2767–2771 (1991).PubMedGoogle Scholar
  27. Sekiguchi M., Nakabeppu Y.: Adaptive response: Induced synthesis of DNA repair enzymes by alkylating agents.Trend Genet. 3, 51–54 (1987).CrossRefGoogle Scholar
  28. Shinohara A., Ogawa H., Ogawa T.: Rad51 protein involved in repair and recombination inSaccharomyces cerevisiœ is a RecA-like protein.Cell 69, 457–470 (1992).PubMedCrossRefGoogle Scholar
  29. Stearns T., Ma H., Botstein D.: Manipulating yeast genome using plasmid vectors.Methods Enzymol. 185, 280–291 1990.PubMedCrossRefGoogle Scholar
  30. Vernet T., Dignard D., Thomas D.Y.: A family of yest expression vectors containing the phage f1 intergenic region.Gene 52, 225–233 (1987).PubMedCrossRefGoogle Scholar
  31. Webster T.D., Dickson R.C.: Direct selection ofSaccharomyces cerevisiœ resistant to the antibiotic G418 following transformation with a DNA vector carrying the kanamycin-resistance gene of Tn903.Gene 52, 225–233 (1987).CrossRefGoogle Scholar
  32. West S.C.: Enzymes and molecular mechanisms of genetic recombination.Ann. Rev. Biochem. 61, 603–640 (1992).PubMedCrossRefGoogle Scholar
  33. Xiao W., Derfler B., Chen I., Samson L.: Primary sequence and biological functions of aSaccharomyces: O6-methylguanine/O4-methylthymine DNA repair methyltransferase gene.EMBO J. 10, 2179–2186 (1991).PubMedGoogle Scholar

Copyright information

© Folia Microbiologica 1995

Authors and Affiliations

  • M. Slaninová
    • 1
  • E. Farkašová
    • 2
  • M. Chovanec
    • 1
  • V. Vlčková
    • 1
  • M. Nälund
    • 3
  • J. A. P. Henriques
    • 4
  • J. Brozmanová
    • 2
  1. 1.Department of Genetics, Faculty of SciencesComenius UniversityBratislavaSlovakia
  2. 2.Department of Molecular Genetics, Cancer Research InstituteSlovak Academy of SciencesBratislavaSlovakia
  3. 3.Department of RadiobiologyStockholm UniversityStockholmSweden
  4. 4.Departemento de Biofisica e Centro de BiotecnologiaUniversidade Federal do Rio Grande do SulPôrto AlegreBrazil

Personalised recommendations