Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 12, Issue 1, pp 185–204 | Cite as

Nonrelativistic composite elementary particles and the conformal Galilei group

  • P. Roman
  • J. J. Aghassi
  • R. M. Santilli
  • P. L. Huddleston
Article

Summary

It is shown that a recently suggested conformal generalization of the Galilei group provides a suitable framework for the algebraic description of nonrelativistic composite elementary particles with interacting (unspecified) constitutents. The formal properties of the new group are clarified and its irreducible unitary representations are found. A maximal set of quantum numbers for the particles is obtained. The energy of the composite particle is quantized and a discrete spectrum emerges. All generators in the Lie algebra are shown to have a simple direct physical interpretation.

Нерелятивистские составные элементарные частицы и конформная группа Галилея

Резюме

Показывается, что недавно предложенное конформное обобщение группы Галилея дает удобную основу для алгебраического описания нерелятивистских составных элементарных частиц с взаимодействующими (неопределенными) составными частями. Уточняутся формальные свойства новой группы и находятся ее неприводимые унитарные представления. Для таких частиц определяется максимальная система квантовых чисел. Энергия составной частицы квантуется и возникает энергетический спектр. Показывается, что все генераторы в алгебре Ли имеют простую физическую интерпретацию.

Riassunto

Si mostra che una generalizzazione conforme del gruppo di Galilei, suggerita di recente, fornisce uno schema adatto alla descrizione algebrica delle particelle elementari composte non relativistiche con costituenti (non specificati) interagenti. Si chiariscono le proprietà formali del nuovo gruppo e si trovano le sue rappresentazioni unitarie irriducibili. Si ottiene un insieme massimo di numeri quantici per le particelle. Si quantizza ducibili. Si ottiene un insieme massimo di numeri quantici per le particelle. Si quantizza l'energia della particella composta e ne emerge uno spettro discreto. Si dimostra che tutti i generatori nell'algebra di Lie hanno una semplice interpretazione fisica diretta.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    For an up-to-date and comprechensive of the Galilei group and its applications seeE. Inönü andE. P. Wigner:Nuovo Cimento,9, 705 (1952).MathSciNetCrossRefMATHGoogle Scholar
  2. (2).
    V. Bargmann:Ann. Math.,59, 1 (1954).MathSciNetCrossRefGoogle Scholar
  3. (3).
    J.-M. Lévy-Leblond's article inGroup Theory and its Applications, edited byE. M. Loebl, Vol.2 (New York, 1971). Regarding pioneering papers on the subject, cf. ref. (1,2)E. Inönü andE. P. Wigner:Nuovo Cimento,9, 705 (1952).V. Bargmann:Ann. Math.,59, 1 (1954). as well asM. Hamermesh:Ann. of Phys.,9, 518 (1960);J.-M. Lévy-Leblond:Journ. Math. Phys.,6, 1519 (1965);J. Voisin:Journ. Math. Phys.,6, 1519 (1965).Google Scholar
  4. (6).
    C. R. Hagen:Phys. Rev. D.,5, 377 (1972).CrossRefADSGoogle Scholar
  5. (8).
    For a recent review of some aspects of this topic, seeP. Carruthers:Phys. Rep.,1, 1 (1971).CrossRefADSGoogle Scholar
  6. (16).
    V. Bargmann:Ann. Math.,48, 568 (1947). andC. Fronsdal:Proc. Roy. Soc., A287, 532 (1965);N. Mukunda:Journ. Math. Phys.,8, 2210 (1967);W. J. Holmann III andL. C. Biedenharn:Ann. of Phys.,39, 1 (1966).MathSciNetCrossRefMATHGoogle Scholar
  7. (25).
    Cf.H. Goldstein:Classical Mechanics (Reading, Mass., 1959).Google Scholar
  8. (26).
    A. O. Barut andR. B. Haugen:Theory of the conformally invariant mass, University of Colorado, Boulder preprint (1971).Google Scholar
  9. (27).
    J. J. Aghassi, P. Roman andR. M. Santilli:Phys. Rev. D,1, 2753 (1970);Journ. Math. Phys.,11, 2297 (1970);R. M. Santilli:Particles and Nuclei,1, 81 (1970).CrossRefADSMATHGoogle Scholar
  10. (28).
    J. J. Aghassi, P. Roman andR. M. Santilli:Nuovo Cimento,5 A, 551 (1971).MathSciNetCrossRefADSGoogle Scholar
  11. (29).
    M. Noga:Phys. Rev. D,2, 304 (1970).MathSciNetCrossRefADSMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1972

Authors and Affiliations

  • P. Roman
    • 1
  • J. J. Aghassi
    • 1
  • R. M. Santilli
    • 1
  • P. L. Huddleston
    • 1
  1. 1.Department of PhysicsBostón UniversityBoston

Personalised recommendations