Russian Physics Journal

, Volume 41, Issue 1, pp 60–66 | Cite as

Coherent states of nonstationary soliton potentials

  • V. G. Bagrov
  • B. F. Samsonov
  • L. A. Shekoyan


With the help of a nonstationary Darboux transformation, we have obtained a system of coherent states for the potential which is a solution of the Kadomtsev-Petviashvili equation. We have determined the measure realizing expansion of unity with respect to these states. We have constructed a holomorphic representation of the state vectors and the ladder operators for the discrete basis of the Hilbert space of solutions of the Schrödinger equation.


Soliton Hilbert Space Coherent State Free Particle Darboux Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Wadati and M. Toda. J. Phys. Soc. Jpn.,32, 1403 (1972).CrossRefADSGoogle Scholar
  2. 2.
    A. R. Its and V. B. Matveev, Teor. Mat. Fiz.,23, 51 (1975).MathSciNetGoogle Scholar
  3. 3.
    V. V. Dodonov and V. I. Man’ko, Trudy FIAN,183, 71 (1987); I. A. Malkin and V. I. Man’ko, Dynamic Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979).MathSciNetGoogle Scholar
  4. 4.
    A. M. Perelomov, Generalized Coherent States and Their Application [in Russian], Nauka, Moscow (1987).Google Scholar
  5. 5.
    V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, New York (1991).zbMATHGoogle Scholar
  6. 6.
    E. L. Ince, Ordinary Differential Equations [Russian translation], GONTI-NKTP-DNTVU, Kharkov (1939); G. Darboux, Compt. Rend. Acad. Sci.,94, 1456 (1882).Google Scholar
  7. 7.
    V. G. Bagrov and B. F. Samsonov, ÉChAYa,28, 951 (1997).MathSciNetGoogle Scholar
  8. 8.
    V. G. Bagrov and B. F. Samsonov, Zh. Éksp. Teor. Fiz.,109, 1105 (1996).Google Scholar
  9. 9.
    B. F. Samsonov, Yadern. Fiz.,59, No. 4, 753 (1996).Google Scholar
  10. 10.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Soliton Theory: The Inverse Problem Method [in Russian], Nauka, Moscow (1980).Google Scholar
  11. 11.
    W. Miller, Symmetry and Separation of Variables [Russian translation], Mir, Moscow (1981).zbMATHGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • V. G. Bagrov
  • B. F. Samsonov
  • L. A. Shekoyan

There are no affiliations available

Personalised recommendations