Advertisement

Journal d’Analyse Mathématique

, Volume 31, Issue 1, pp 204–256 | Cite as

Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions

  • Harry Furstenberg
Article

Keywords

Arithmetic Progression Finite Order Generalize Eigenfunctions Ergodic Component Regular Borel Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Furstenberg,The structure of distal flows, Amer. J. Math.85 (1963), 477–515.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Y. Khintchine,Three Pearls of Number Theory, Graylock Press, New York, 1952.Google Scholar
  3. 3.
    U. Krengel,Weakly wandering vectors and weakly independent partitions, Trans. Amer. Math. Soc.164 (1972), 199–226.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    G. W. Mackey,Induced representation of locally compact groups, I, Ann. of Math.55 (1952), 101–139.CrossRefMathSciNetGoogle Scholar
  5. 5.
    K. F. Roth,Sur quelques ensembles d'entiers, C. R. Acad. Sci. Paris234 (1952), 388–390.zbMATHMathSciNetGoogle Scholar
  6. 6.
    E. Szemerédi,On acts of integers containing no four elements in arithmetic progression, Acta Math. Acad. Sci. Hungar.20 (1969), 89–104.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    E. Szemerédi,On acts of integers containing no k elements in arithmetic progression, Acta Arith.27 (1975), 199.zbMATHMathSciNetGoogle Scholar
  8. 8.
    R. Zimmer,Ergodic actions with generalized discrete spectrum, to appear.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1977

Authors and Affiliations

  • Harry Furstenberg
    • 1
  1. 1.The Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations