, Volume 53, Issue 2, pp 173–235 | Cite as

Cainozoic ferns and their distribution

  • Margaret E. Collinson


The phytogeographic distribution of Cainozoic ferns is reported based upon a critical re-appraisal of the macrofossil and mesofossil record also taking account of evidence from a few highly diagnostic spores. Well-documented circum-Arctic Cainozoic floras show ferns (Woodwardia, Onoclea, Osmunda, Coniopteris and to a lesser extentAzolla) distributed around the pole to very high paleolatitudes. Some ferns are shared between the mid-paleolatitudes of North America and Europe as would be predicted from the distributions of other biota. Evidence for the composition of Cainozoic fern floras is minimal in some regions (e.g., Antarctica, Central and South America, Africa, India, South East Asia), so the absence of fern fossils from these areas has no biogeographical significance. Matoniaceae were abundant in the preceding Mesozoic. However, the absence of Cainozoic macrofossils, and the fact that no CainozoicMatonisporites spores areMatonia-like, indicates that Matoniaceae had attained their modern relict distribution by, or very early in, the Cainozoic. The important Mesozoic families Marattiaceae and Dipteridaceae are also not represented by Cainozoic macrofossils. They probably also showed Cainozoic restriction but spores are not sufficiently diagnostic to enable testing of this hypothesis. Other ferns, which were also important in the Mesozoic (e.g., Dicksoniaceae, Gleicheniaceae), have patchy, equivocal, or inadequately published Cainozoic records. The dispersed spore record may provide an opportunity to track Cainozoic Gleicheniaceae but this approach is not without problems. Most well-represented Cainozoic fern families, genera and subgenera show widespread Cainozoic ranges, typically with considerable range extensions over their living relatives, both onto other continents and north and south to higher paleolatitudes. These include Schizaeaceae (Lygodium, Anemia, and the extinctRuffordia), Osmundaceae (Osmunda), Pteridaceae (Acrostichum), Thelypteridaceae (Cyclosorus), Lophosoriaceae (Lophosoria), Cyatheaceae (theCnemidaria/Cyathea decurrens clade) and the heterosporous water fernAzolla (Azollaceae). A few well-represented ferns show Cainozoic distributions similar to those of the present day (e.g.,Salvinia [Salviniaceae] andCeratopteris [Pteridaceae] (the latter by the Neogene and based only on spores]) but even these had slightly broader ranges in the Cainozoic. Some Cainozoic ferns have apparently local distributions, e.g.,Blechnum dentatum (Blechnaceae) in Europe; and others are so far represented at only one or few sites, e.g.,Dennstaedtiopsis (Dennstaedtiaceae),Botrychium (Ophioglossales),Grammitis (Grammitidaceae), andMakotopteris andRumohra (Dryopteridaceae). Cainozoic fossils assigned toDryopteris (and some other dryopteroids) require revision along with those of Thelypteridaceae, the latter having high potential to provide useful paleobiogeographic evidence, at least of theCyclosorus group. Cainozoic records of Hymenophyllaceae and Polypodiaceae are here considered unconfirmed.

Key words

biogeography Cainozoic fern fossil paleobiogeography Tertiary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alley, N. F. 1987. Middle Eocene age of the megafossil flora at Golden Grove, South Australia: preliminary report and comparison with the Maslin Bay flora. Trans. Roy. Soc. South Australia 111: 211–212.Google Scholar
  2. Álvarez Ramis, C. &T. Fernández Marrón. 1995. On the distribution, habitats and morphological-anatomical features of fossil rests ofAcrostichum genus. Coloquios de Paleontología, Madrid No. 47: 193–235.Google Scholar
  3. Anderson, J. A. R. &J. Muller. 1975. Palynological study of a Holocene peat and a Miocene coal deposit from NW Borneo. Rev. Palaeobot. Palynol. 19: 291–351.Google Scholar
  4. Andrews, H. N. &C. S. Pearsall. 1941. On the flora of the Frontier Formation of southeastern Wyoming. Ann. Missouri Bot. Gard. 28: 165–193.Google Scholar
  5. —,C. A. Arnold, E. Boureau, J. Doubinger &S. Leclercq. 1970. Traité de Paléobotanique. Vol. IV, Fasc. I. Filicophyta. Masson, Paris.Google Scholar
  6. Archangelsky, A., C. J. Phipps, T. N. Taylor &E. L. Taylor. 1999.Paleoazolla, a new heterosporous fern from the upper Cretaceous of Argentina. Amer. J. Bot. 86: 1200–1206.Google Scholar
  7. Arguijo, M. H. &E. J. Romero. 1981. Analisis bioestratigráfico de formaciones portadoras de tafofloras Terciáricas. Actas del Octoavo Congresco Geológico Argentino 4: 691–717.Google Scholar
  8. Arnold, C. A. &L. H. Daugherty. 1963. The fern genusAcrostichum in the Eocene Clarno Formation of Oregon. Contr. Mus. Paleontol. Univ. Michigan 18: 205–227.Google Scholar
  9. ——. 1964. A fossil dennstaedtioid fern from the Eocene Clarno Formation of Oregon. Contr. Mus. Paleontol. Univ. Michigan 19: 55–88.Google Scholar
  10. Aubry, M. P., S. Lucas &W. A. Berggren, editors. 1998. Late Paleocene-early Eocene climatic and biotic events in the marine and terrestrial records. Columbia University Press, New York.Google Scholar
  11. Awasthi, N., J. S. Guleria, M. Prasad &R. Srivastava. 1996. Occurrence ofAcrostichum Linn., a coastal fern in the Tertiary sediments of Kasauli, Himachal Pradesh, north-west Himalaya. Palaeobotanist 43: 83–87.Google Scholar
  12. Bancroft, H. 1932. A fossil cyatheoid stem from Mount Elgon, East Africa. New Phytol. 31: 241–253.Google Scholar
  13. Bande, M. B. 1992. The Palaeogene vegetation of peninsular India (megafossil evidence). Palaeobotanist 40: 275–284.Google Scholar
  14. — &U. Prakash. 1986. The Tertiary flora of South East Asia with remarks on its palaeoenvironment and phytogeography of the Indo-malayan region. Rev. Palaeobot. Palynol. 49: 203–233.Google Scholar
  15. Barrington, D. S. 1983.Cibotium oregonense: an Eocene tree fern stem and petioles with internal structure. Amer. J. Bot. 70: 1118–1124.Google Scholar
  16. Barthel, M. 1976. Farne und Cycadeen. Abh. Zentr. Geol. Inst. 26: 1–507 +atlas 91 pls.Google Scholar
  17. Batten, D. J. & M. E. Collinson. In press. Revision of Palaeocene species ofMinerisporites, Azolla and associated plant microfossils from the Netherlands, Belgium and the United States. Rev. Palaeobot. Palynol.Google Scholar
  18. — &W. L. Kovach. 1990. Catalog of Mesozoic and Tertiary megaspores. Contr. Ser. Amer. Assoc. Stratigr. Palynologists 24: 1–227.Google Scholar
  19. —,M. E. Collinson &A. P. R. Brain. 1998. Ultrastructural interpretation of the late Cretaceous megasporeGlomerisporites pupus and its associated microspores. Amer. J. Bot. 85: 724–735.Google Scholar
  20. Bauzá Rullán, J. 1956. Flora Oligocenica de Son Fe (Alcudia). Bol. Soc. Hist. Nat. Baleares 2: 89–90 +pl. 6.Google Scholar
  21. — 1961. Contribución al conocimiento de la flora fósil de Mallorca. Estud. Geol. 17: 161–174.Google Scholar
  22. Berger, J.-P. 1998. “Rochette” (upper Oligocene, Swiss Molasse): a strange example of a fossil assemblage. Rev. Palaeobot. Palynol. 101: 95–110.Google Scholar
  23. Berry, E. W. 1922. Pliocene fossil plants from eastern Bolivia. Johns Hopkins Univ. Stud. Geol. 4: 145–192 +8 pls.Google Scholar
  24. — 1923. Miocene plants from southern Mexico. Proc. U.S. Natl. Mus. 62: 1–27.Google Scholar
  25. — 1924. The middle and upper Eocene floras of south eastern North America. Prof. Pap. U.S. Geol. Surv. 92: 1–204 +65 pls.Google Scholar
  26. — 1938. Tertiary flora from the Rio Pichileufo, Argentina. Special Pap. Geol. Soc. Amer. 12: 1–149 +56 pls.Google Scholar
  27. — 1939a. The fossil flora of Potosi, Bolivia. Johns Hopkins Univ. Stud. Geol. 13: 9–67.Google Scholar
  28. — 1939b. A Miocene flora from the Gorge of the Yumuri River, Matanza, Cuba. Johns Hopkins Univ. Stud. Geol. 13: 95–135 +pls. 15–17.Google Scholar
  29. Blackburn, D. T. 1985. Palaeobotany of the Yallourn and Morwell Coal Seams. Palaeobotanical Project—Report 3. State Electricity Commission of Victoria, Melbourne.Google Scholar
  30. — &I. R. K. Sluiter. 1994. The Oligo-Miocene floras of southeastern Australia. Pages 328–367.In: R. S. Hill, editor. History of the Australian vegetation: Cretaceous to Recent. Cambridge University Press, Cambridge.Google Scholar
  31. Boulter, M. C. &Z. Kvacek. 1989. The Palaeocene flora of the Isle of Mull. Spec. Pap. Palaeontol. 42: 1–149.Google Scholar
  32. —,R. N. L. B. Hubbard &Z. Kvacek. 1993. A comparison of intuitive and objective interpretations of Miocene plant assemblages from north Bohemia. Palaeogeogr. Palaeoclim. Palaeoecol. 101: 81–96.Google Scholar
  33. Boyd, A. 1990. The Thyra Ø Flora: towards an understanding of the climate and vegetation during the early Tertiary in the High Arctic. Rev. Palaeobot. Palynol. 62: 189–203.Google Scholar
  34. Braun, A. 1872. Ueber Marsilia Marioni, eine fossil Art aus der Tertiärzeit. Bot. Zeitung (Berlin) 30: 653.Google Scholar
  35. Brown, R. W. 1943. A climbing fern from the upper Cretaceous of Wyoming. J. Wash. Acad. Sci. 33: 141–142.Google Scholar
  36. — 1962. Paleocene flora of the Rocky Mountains and Great Plains. Prof. Pap. U.S. Geol. Surv. 375: 1–119 +69 pls.Google Scholar
  37. Brown, S. M. 1994. Migrations and evolution: computerised maps from computerised data. Pages 327–346.In: M. C. Boulter & H. C. Fisher editors. Cenozoic plants and climates of the Arctic. Springer-Verlag, Berlin.Google Scholar
  38. Budantsev, L. Yu. 1994. The fossil flora of the Paleogene climatic optimum in north eastern Asia. Pages 297–313.In: M. C. Boulter & H. C. Fisher editors. Cenozoic plants and climates of the Arctic. Springer-Verlag, Berlin.Google Scholar
  39. Buzek, C. & M. Konzalová. 1979.Salvinia megaspores (Filicinae) from the lower Miocene of the North-Bohemian Basin. Pages 117–128.In: V. Pokorny editor. Paleontologicka Konference '77—Univerzita Karlova 1978. Praha.Google Scholar
  40. ——. 1983. A fertileLygodium from the Cypris Formation of the Cheb Basin (West Bohemia, Czechoslovakia). Cas. Miner. Geol. 28: 31–39 +4 pls.Google Scholar
  41. —— &Z. Kvacek. 1971. The genusSalvinia from the Tertiary of the North-Bohemian Basin. Sb. Geol. Ved. Paleontol. (Cz.) 13: 179–222 +8 pls.Google Scholar
  42. —,F. Holy &Z. Kvacek. 1996. Early Miocene flora of the Cypris Shale (western Bohemia). Sborn. Nár. Mus. v Praze, Rada B, Prir. Vedy. 52: 1–72.Google Scholar
  43. Cantrill, D. J. 1998. Early Cretaceous fern foliage from President Head, Snow Island, Antarctica. Alcheringa 22: 241–258.Google Scholar
  44. Carpenter, R. J. 1991. Paleovegetation and environment at Cethana, Tasmania. Ph.D. thesis, University of Tasmania. [Only Pteriophyta seen.]Google Scholar
  45. —,R. S. Hill &G. J. Jordan. 1994. Cenozoic vegetation in Tasmania: macrofossil evidence. Pages 276–298.In: R. S. Hill editor. History of the Australian vegetation: Cretaceous to Recent, Cambridge University Press, Cambridge.Google Scholar
  46. Case, J. A. 1988. Paleogene floras from Seymour Island, Antarctic Peninsula. Mem. Geol. Soc. Amer. 169: 523–530.Google Scholar
  47. Cernjavska, S., E. Palamarev &A. Petkova. 1988. Micropaleobotanical and macropaleobotanical characteristics of the Paleogene sediments in Hvojna Basin (Central Rhodopes). Paleontologiya, Stratigrafiya i Litologiya, Sofia 26: 26–36.Google Scholar
  48. Cevallos-Ferriz, S. R. S., R. A. Stockey &K. P. Pigg. 1991. The Princeton chert: evidence for in situ aquatic plants. Rev. Palaeobot. Palynol. 70: 173–185.Google Scholar
  49. Chandler, M. E. J. 1955. The Schizaeaceae of the south of England in early Tertiary times. Bull. Brit. Mus. (Nat. Hist.), Geol. 2: 291–314 + pls. 32–38.Google Scholar
  50. — 1961. The lower Tertiary floras of southern England. I. Palaeocene floras: London Clay Flora (suppl.). Text and Atlas. British Museum (Natural History), London.Google Scholar
  51. — 1962. The lower Tertiary floras of southern England. II. Flora of the Pipe-Clay Series of Dorset (lower Bagshot). British Museum (Natural History). London.Google Scholar
  52. — 1963. The lower Tertiary floras of southern England. III. Flora of the Bournemouth Beds; The Boscombe and the Highcliff Sands. British Museum (Natural History). London.Google Scholar
  53. — 1964. The lower Tertiary floras of southern England. IV. A summary and survey of findings in the light of recent botanical observations. British Museum (Natural History), London.Google Scholar
  54. — 1965. The generic position ofOsmundites dowkeri Carruthers. Bull. Brit. Mus. (Nat. Hist.) Geol. 10: 141–161 + 12 pls.Google Scholar
  55. — 1968. A new Tempskya from Kent. Bull. Brit. Mus. (Nat. Hist.), Geol. 15: 171–179 + pls. 1–12.Google Scholar
  56. Chandrasekharam, A. 1974. Megafossil flora from the Genesee locality, Alberta, Canada. Palaeontographica Abt. B, Paläophytol. 147: 1–41 + 22 pls.Google Scholar
  57. Chen, F., S. Deng &K. Sun. 1997. Early CretaceousAthyrium Roth from northeastern China. Palaeobotanist 46: 117–133.Google Scholar
  58. Christophel, D. C., W. K. Harris &A. K. Syber. 1987. The Eocene flora of the Anglesea locality, Victoria. Alcheringa 11: 303–323.Google Scholar
  59. Collinson, M. E. 1978. Dispersed fern sporangia from the British Tertiary. Ann. Bot. (König & Sims) 42: 233–250.Google Scholar
  60. — 1980. A new multiple floatedAzolla from the Eocene of Britain with a brief review of the genus. Palaeontology 23: 213–229.Google Scholar
  61. — 1983a. Fossil plants of the London Clay. Field Guides to Fossils Number 1. Palaeontological Association, London.Google Scholar
  62. — 1983b. Palaeofloristic assemblages and palaeoecology of the lower Oligocene Bembridge Marls, Hamstead Ledge, Isle of Wight. Bot. J. Linn. Soc. 86: 177–225.Google Scholar
  63. — 1986a. Use of modern generic names for plant fossils. Pages. 91–104.In: R. A. Spicer & B. A. Thomas editors. Systematic and taxonomic approaches in palaeobotany. Systematics Association Special Volume 31. Oxford University Press, Oxford.Google Scholar
  64. — 1986b. The Felpham flora: a preliminary report. Tertiary Res. 8: 29–32.Google Scholar
  65. — 1990. Plant evolution and ecology during the early Cainozoic diversification. Adv. Bot. Res. 17: 1–98.Google Scholar
  66. — 1991. Diversification of modern heterosporous pteridophytes. Pages 119–150.In: S. Blackmore & S. H. Barnes editors. Pollen and spores. Systematics Association Special Volume No. 44. Clarendon Press, Oxford.Google Scholar
  67. — 1992a. Vegetational and floristic changes around the Eocene/Oligocene boundary in western and Central Europe. Pages 437–450.In: D. R. Prothero & W. A. Berggren editors. Eocene—Oligocene climatic and biotic evolution. Princeton University Press, Princeton.Google Scholar
  68. — 1992b. The late Cretaceous and Palaeocene history of salvinialean water ferns. Pages 121–127.In: J. Kovar-Eder editor. Palaeovegetational development in Europe and regions relevant to its floristic evolution. Museum of Natural History, Vienna.Google Scholar
  69. — 1996a. “What use are fossil ferns?”—20 years on: with a review of the fossil history of extant pteridophyte families and genera. Pages 349–394.In: J. M. Camus, M. Gibby & R. J. Johns editors. Pteridology in perspective. Royal Botanic Gardens, Kew.Google Scholar
  70. — 1996b. Plant macrofossils from the Bracklesham Group (early & middle Eocene). Bracklesham Bay, West Sussex, England; review and significance in the context of coeval British tertiary floras. Tertiary Res. 16: 175–202.Google Scholar
  71. — 2000a. Cainozoic evolution of modern plant communities and vegetation. Pages 223–243.In: S. Culver & P. Rawson editors. Biotic response to global change: the last 145 million years. Cambridge University Press, Cambridge.Google Scholar
  72. — 2000b. Fruit and seed floras from Palaeocene/Eocene transitional strata in southern England and their palaeoenvironmental implications. GFF 122: 36–37.Google Scholar
  73. —. 1977. Pyritised fern rachides in the London Clay. Tertiary Res. 1: 109–113.Google Scholar
  74. Conant, D. S., L. A. Raubeson, D. K. Attwood, S. Perera, E. A. Zimmer, J. Sweere &D. B. Stein. 1996. Phylogenetic and evolutionary implications of combined analysis of DNA and morphology in the Cyatheaceae. Pages 231–248.In: J. M. Camus, M. Gibby & R. J. Johns editors. Pteridology in perspective. Royal Botanic Gardens, Kew.Google Scholar
  75. Grane, P. R. &S. Lidgard. 1990. Angiosperm radiation and patterns of Cretaceous palynological diversity. Pages 377–407.In: P. D. Taylor & G. P. Larwood editors. Major evolutionary radiations. Systematics Association Special Volume 42. Clarendon Press, Oxford.Google Scholar
  76. Cranfill, R. 1998. Systematics, phylogeny and biogeography of the genusWoodwardia (Blechnaceae). Amer. J. Bot. 85 (6 suppl.): 100.Google Scholar
  77. Cranfill, R. 2000. Monograph of the genusWoodwardia (blechnaceae). Ph.D. dissertation. University of California at Berkeley. [Not seen.]Google Scholar
  78. Daghlian, C. P. &W. L. Crepet. 1983. Oak catkins, leaves and fruits from the Oligocene Catahoula Formation and their evolutionary significance. Amer. J. Bot. 70: 639–649.Google Scholar
  79. Davies-Vollum, S. &S. Wing. 1998. Sedimentological, taphonomic, and climatic aspects of Eocene swamp deposits (Willwood formation, Bighorn Basin, Wyoming). Palaios 13: 28–40.Google Scholar
  80. Deng, S. 1997.Eogonocormus—a new early Cretaceous fern of Hymenophyllaceae from China. Austral. Syst. Bot. 10: 59–67.Google Scholar
  81. Dettmann, M. E. 1963. Upper Mesozoic microfloras from south-eastern Australia. Proc. Roy. Soc. Victoria n.s. 77: 1–148.Google Scholar
  82. — 1986. Significance of the Cretaceous-Tertiary spore genusCyatheacidites in tracing the origin and migration ofLophosoria (Filicopsida). Spec. Pap. Palaeontol. 35: 63–94.Google Scholar
  83. —. 1991. Spore morphology ofAnemia, Mohria andCeratopteris (Filicales). Amer. J. Bot. 78: 303–325.Google Scholar
  84. —&—. 1992. Phylogeny and biogeography ofRuffordia, Mohria andAnemia (Schizaeaceae) andCeratopteris (Pteridaceae): evidence from in situ and dispersed spores. Alcheringa 16: 269–314.Google Scholar
  85. Doktor, M., A. Gazdzicki, A. Jerzmanska, S. J. Porebski &E. Zastawniak. 1996. A plant and fish assemblage from the Eocene la Meseta Formation of Seymour Island (Antarctic Peninsula) and its environmental implications. Palaeontol. Polon. 55: 127–146.Google Scholar
  86. Dorofee, P. I. 1981. On the taxonomy of the Tertiary Marsileaceae. Bot. Zhurn. (Moscow & Leningrad) 66: 792–801.Google Scholar
  87. Dusén, P. 1908. Die Tertiäre Flora der Seymour-Insel. Wiss. Erg. Schwed. Sudpolar-Exp. 3(3): 1–27 +4 pls.Google Scholar
  88. Elsik, W. C. 1968a. Palynology of a Paleocene Rockdale lignite, Milam County, Texas, I. Pollen & Spores 10: 263–314, + 15 pls.Google Scholar
  89. — 1968b. Palynology of a Paleocene Rockdale lignite, Milam County, Texas. II. Morphology and taxonomy—end. Pollen & Spores 10: 599–664 + 29 pls.Google Scholar
  90. Endo, S. 1968. The flora from the Eocene Woodwardia Formation, Ishikari Coalfield, Hokkaido, Japan. Bull. Natl. Sci. Mus. Tokyo 11: 411–449 + 26 pls.Google Scholar
  91. Evitt, W. R. 1973. MaastrichtianAquilapollenites in Texas, Maryland and New Jersey. Geosci. & Man. 7: 31–38.Google Scholar
  92. Farley, M. B. 1990. Vegetation distribution across the early eocene depositional landscape from palynological analysis. Palaeogeogr., Palaeoclimatol., Palaeoecol. 79: 11–27.Google Scholar
  93. Fedotov, V. V. 1970. New species of aspidiaceous and polypodiaceous ferns with sporangia from the Paleogene of the Zeya-Bureya depression. Palaeontol. J. 4: 539–546.Google Scholar
  94. Florin, R. 1940. Zur kenntnis einiger fossiles Salvinia-arten und der früheren geographischen verbreitung der Gattung. Svensk Bot. Tidsk. 34: 265–292 + pls. 2–3.Google Scholar
  95. Fot'janova, L. J. 1963. On the water fernSalvinia from the middle Miocene of Sakhalin. Palaeontol. J. 2: 126–133.Google Scholar
  96. Frankenhäuser, H., &V. Wilde. 1993. Farne aus der mitteleozänen Maarfüllung von Eckfeld bei Manderscheid in der Eifel. Mainzer Naturwiss. Archiv, Beiheft. 31: 149–167.Google Scholar
  97. Frederiksen, N. O. 1988. Sporomorph biostratigraphy, floral changes and paleoclimatology, Eocene and earliest Oligocene of the eastern Gulf Coast. Prof. Pap. U.S. Geol. Surv. 1448: 1–68 + 16 pls.Google Scholar
  98. Galtier, J. &T. L. Phillips. 1996. Structure and evolutionary significance of Palaeozoic ferns. Pages 417–433.In: J. M. Camus, M. Gibby & R. J. Johns editors. Pteridology in perspective. Royal Botanic Gardens, Kew.Google Scholar
  99. Gandolfo, M. A., K. C. Nixon, W. L. Crepet &G. E. Ratcliffe. 1997. A new fossil assignable to the Gleicheniaceae from the late Cretaceous sediments of New Jersey. Amer. J. Bot. 84: 483–493.Google Scholar
  100. Gardner, J. S. 1886. Eocene ferns from the basalts of Ireland and Scotland. J. Linn. Soc. Bot. 25: 655–669 + pl. 26.Google Scholar
  101. Gardner, J. S. & C. B. Ettingshausen. 1879–1882. A monograph of the British Eocene Flora. Vol. I Filices. Parts I–III. Monographs of the Palaeontographical Society, London.Google Scholar
  102. Gill, E. M. &K. M. McWhae. 1959. Tertiary fossil ferns from Victoria, Australia. Memoirs of the National Museum of Victoria 24: 45–50.Google Scholar
  103. Golovneva, L. B. 1995. Environmental changes and pattern of floral evolution during the Cretaceous Tertiary transition in north-eastern Asia. Paleontol. J. 29(2A): 36–49.Google Scholar
  104. — 1998. Cretaceous floral evolution in northeastern Russia. Paleontol. J. 32(6): 633–641.Google Scholar
  105. Gomez, L. D. 1982.Grammitis succinea, the firstNew World fern found in amber. Amer. Fern J. 72: 49–52.Google Scholar
  106. Graham, A. 1965. The Sucker Creek and Trout Creek Miocene floras of southeastern Oregon. Kent State Univ. Bull., Res. Ser. 9. [Not seen]Google Scholar
  107. — 1993. Contribution toward a Tertiary palynostratigraphy for Jamaica: the status of Tertiary palaeobotanical studies in northern Latin America and preliminary analysis of the Guys Hill Member (Chapleton Formation, middle Eocene) of Jamaica. Mem. Geol. Soc. Amer. 182: 443–461.Google Scholar
  108. Greenwood, D. R. &J. F. Basinger. 1993. Stratigraphy and floristics of Eocene swamp forests from Axel Heiberg Island, Canadian Arctic Archipelago. Canad. J. Earth Sci. 30: 1914–1923.Google Scholar
  109. —&—. 1993. The paleoecology of highlatitude Eocene swamp forests from Axel Heiberg Island, Canadian High Arctic. Rev. Palaeobot. Palynol. 81: 83–97.Google Scholar
  110. —. 2000. Victorian Paleogene and Neogene macrofloras: a conspectus. Proc. Roy. Soc. Victoria 112: 65–92.Google Scholar
  111. Guleria, J. S. 1992. Neogene vegetation of peninsular India. Palaeobotanist 40: 285–311.Google Scholar
  112. Guo, S. 1985. Preliminary interpretation of Tertiary climate by using megafossil floras in China. Palaeontologia Cathayana 2: 169–175.Google Scholar
  113. — 1990. A brief review of megaflora successions and climatic changes of the Cretaceous and early Tertiary in China. Pages 23–38.In: E. Knobloch & Z. Kvacek editors. Proceedings of the Symposium Palaeofloristic and Palaeoclimatic Changes in the Cretaceous and Tertiary. Geological Survey Publisher. Prague.Google Scholar
  114. Hably, L. 1994. Egerian plant fossils from Pomáz, Hungary, Fragm. Mineralog. Palaeontol., Budapest 17: 5–70.Google Scholar
  115. Halle, T. G. 1940. A fossil fertileLygodium from the Tertiary of South Chile. Svensk Bot. Tidskr. 34: 257–264.Google Scholar
  116. Harrington, G. J. 1999. North American palynofloral dynamics in the late Palaeocene to early Eocene. Ph.D. thesis, University of Sheffield.Google Scholar
  117. Harris, W. K. 1971. Tertiary stratigraphic palynology. Pages 67–87.In: H. Wopfner & J. G. Douglas editors. The Otway Basin of Australia. Special Bulletin, Geological Surveys of South Australia and Victoria.Google Scholar
  118. Hasebe, M., T. Omori, M. Nakazawa, T. Sano, M. Kato &K. Iwatsuki. 1994.rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proc. Natl. Acad. Sci. U.S.A. 91: 5730–5734.PubMedGoogle Scholar
  119. —————&—. 1995. Fern phylogeny based onrbcL nucleotide sequences. Amer. Fern J. 85: 134–181.Google Scholar
  120. Hennipman, E. 1996. Scientific consensus classification of Pteridophyta. Pages 191–202.In: J. M. Camus, M. Gibby & R. J. Johns editors. Pteridology in perspective. Royal Botanic Gardens. Kew.Google Scholar
  121. Herbst, R., L. M. Anzotegui &G. Jalfin. 1987. Estratigrafia, paleoambientes y dos especes deSalvinia Adanson (Filicopsida), del Mioceno superior de Salta, Argentina. Facena Corrientes Argentina 7: 15–42.Google Scholar
  122. Herendeen, P. S. &J. E. Skog. 1998.Gléichenia chaloneri—a new fossil fern from the lower Cretaceous (Albian) of England. Int. J. Pl. Sci. 159: 870–879.Google Scholar
  123. Herman, A. B. 1993. Stages and cycles in the late Cretaceous floral changes of the Anadyr'-Koryak subregion (northeast Russia) and their connection with climate changes. Stratigraphy and Geological Correlation 1: 77–87.Google Scholar
  124. — 1994. A review of late Cretaceous floras and climates of Arctic Russia. Pages 127–149.In M. C. Boulter & H. C. Fisher editors. Cenozoic plants and climates of the Arctic. Springer-Verlag. Berlin.Google Scholar
  125. —. 1995. Latest Cretaceous flora of north-eastern Russia and the “Terminal Cretaceous Event” in the Arctic. Paleontol. J. 29(2A): 22–35.Google Scholar
  126. —&—. 1997. The Koryak flora: did the early Tertiary deciduous flora begin in the Maastrichtian of north-eastern Russia? Meded. Nederlands Inst. Toegepaste Geowetenschappen TNO (Proc. 4th EPPC: The Koryak Flora): 58: 87–92.Google Scholar
  127. Hickey, L. J. 1977. Stratigraphy and paleobotany of the Golden Valley Formation (early Tertiary) of western North Dakota. Mem. Geol. Soc. Amer. 150: 1–181 + 55 pls.Google Scholar
  128. Hill, C. R. &J. M. Camus. 1986. Evolutionary cladistics of marattialean ferns. Bull. Brit. Mus. (Nat. Hist.) Bot. 14: 219–300.Google Scholar
  129. Hill, R. S. 1982. The Eocene megafossil flora of Nerriga, New South Wales, Australia. Palaeontographica Abt. B, Paläophytol. 181: 44–77.Google Scholar
  130. — editor. 1994. History of the Australian vegetation: Cretaceous to Recent. Cambridge University Press. Cambridge.Google Scholar
  131. —. 1998. The fossil record of ferns and fern allies in Australia. Pages 29–35.In: A. E. Orchard editor. Flora of Australia. Vol. 48: Ferns, gymnosperms, and allied groups. ABRS/CSIRO, Melbourne.Google Scholar
  132. —. 1983. Reconstruction of the Oligocene vegetation at Pioneer, northeast Tasmania. Alcheringa 7: 281–299.Google Scholar
  133. Hoffman, G. L. &R. A. Stockey. 1994. Sporophytes, megaspores and massulae ofAzolla stanleyi from the Paleocene Joffre Bridge locality, Alberta. Canad. J. Bot. 72: 301–308.Google Scholar
  134. —&—. 1994. Geological setting and paleobotany of the Joffre Bridge Roadcut fossil locality (late Paleocene), Red Deer Valley, Alberta. Canad. J. Earth Sci. 36: 2073–2084.Google Scholar
  135. Hollick, A. 1928. Paleobotany of Porto Rico. Pages 177–393.In: Scientific Survey of Porto Rico and the Virgin Islands. Vol. 7, Part 3. New York Academy of Sciences, New York.Google Scholar
  136. Holttum, R. E. 1957. Morphology, growth-habit and classification in the family Gleicheniaceae. Phytomorphology 7: 168–184.Google Scholar
  137. Hooghiemstra, H. 1984. Vegetational and climatic history of the High Plain of Bogota, Colombia: a continuous record of the last 3.5 million years. Diss. Bot. 79: 1–280.Google Scholar
  138. Hooker, J. J. 1998. Mammalian faunal change across the Paleocene-Eocene transition in Europe. Pages 428–450.In: M. P. Aubry, S. Lucas & W. A. Berggren editor. Late Paleocene-early Eocene climatic and biotic events in the marine and terrestrial records. Columbia University Press. New York.Google Scholar
  139. Hubbard, R. N. L. B. &Z. Kvacek 1998. Reconstruction of a Czech early Miocene vegetation. Proc. Geol. Assoc. 109: 33–50.Google Scholar
  140. Hurnik, S. 1978. Die fossilen Arten der gattung Woodwardia Smith, 1793 und ihre vertretung im Nordböhmischen Tertiär. Sborn. Nár. Mus. v Praze, Rada B., Prir. Vedy 32: 15–46 + 3 pls.Google Scholar
  141. Huzioka, K. &E. Takahasi. 1970. The Eocene flora of the Ube coal-field, southwest Honshu, Japan. J. Mining Coll. Akita Univ. Ser. A, Mining Geol., IV(5): 1–88 + 21 pls.Google Scholar
  142. Iljinskaja, I. A. &G. P. Pneva. 1984. Paporotniki oligotsenovoi flory Gory Ashutas v Kazakhstane. Bot. Zh. 69: 595–604. [In Russian]Google Scholar
  143. Jansonius, J. & L. V. Hills. 1976 (and supplements to 1999). Genera file of fossil spores. Special publication of the Department of Geology, University of Calgary.Google Scholar
  144. Jerzykiewicz, T. &A. R. Sweet. 1986. The Cretaceous-Tertiary boundary in the central Alberta foothills. I. Stratigraphy. Canad. J. Earth Sci. 23: 1356–1374.Google Scholar
  145. Jolley, D. W. 1997. Palaeosurface palynofloras of the Skye lava field and the age of the British Tertiary volcanic province. Pages 67–94.In: M. Widdowson editor. Palaeosurfaces: recognition, reconstruction and palaeoenvironmental interpretation. Special Publication 120. Geological Society of London, London.Google Scholar
  146. Jordan, G. J., M. K. Macphail &R. S. Hill. 1996. A fertile pinnule fragment with spores ofDicksonia from Oligocene sediments in Tasmania. Rev. Palaeobot. Palynol. 92: 245–252.Google Scholar
  147. Kempf, E. G. 1971. Elektronenmikroskopie der sporodermis von mega- und mikrosporen der pteridophyten-gattungSalvinia aus dem Tertiär und Quar-tär Deutschlands. Palaeontographica Abt. B. Paläophytol. 136: 47–70.Google Scholar
  148. — 1993. Hydropteriden-Floren als Zeitmarken im Rheinischen Braunkohlen-Tertiär. Sonderveröffentlichungen Geol. Inst. Univ. Köln 70: 527–596.Google Scholar
  149. Knobloch, E. &Z. Kvacek. 1976. Miozäne Blätterfloren vom Westrand der Böhmischen Masse. Rozpr. Ústredniho Ústavu Geol. 42: 1–130.Google Scholar
  150. Knobloch, E., M. Konzalova & Z. Kvacek. 1996. Die Obereozäne Flora der Staré Sedlo-Schichtenfolge in Böhmen (Mitteleuropa). Rozprovy Ceského Geologickeho Ústavu. Vol. 49.Google Scholar
  151. Knowlton, F. H.. 1899. Fossil flora of the Yellowstone National Park. U.S. Geol. Surv. Monogr. 32: 651–791.Google Scholar
  152. —. 1930. The flora of the Denver and associated Formations of Colorado. Prof. Pap. U.S. Geol. Surv. 155: 1–142 + 59 pls.Google Scholar
  153. Koch, B. E. 1963. Fossil plants from the lower Paleocene of the Agatdalen (Angmartussut) area, central Nugssuaq Peninsula, northwest Greenland. Meddel. Grønland 172: 1–120 + 55 pls.Google Scholar
  154. Kovach, W. L. &D. J. Batten. 1989. Worldwide stratigraphic occurrences of Mesozoic and Tertiary megaspores. Palynology 13: 247–277.Google Scholar
  155. Kovar-Eder, J., R. Givulescu, L. Hably, Z. Kvacek, D. Mihajlovic, J. Teslenko, H. Walther &E. Zastawniak. 1994. Floristic changes in the areas surrounding the Paratethys during Neogene time. Pages 347–369.In: M. C. Boulter & H. C. Fisher editors. Cenozoic plants and climates of the Arctic. Springer-Verlag, Berlin.Google Scholar
  156. Kramer, K. U. &P. S. Green editors. 1990. The families and genera of vascular plants. Vol. 1: Pteridophytes and Gymnosperms. Springer-Verlag, Berlin.Google Scholar
  157. Kräusel, R.. 1929. Fossile Pflanzen aus dem Tertiär von Süd-Sumatra. Verh. Geol.-Mijnb. genootschap voor Nederland en Koloniën, Geol. Ser. 9: 1–47.Google Scholar
  158. Kurmann, M. H. &T. N. Taylor. 1989. Sporoderm ultrastructure ofLophosoria andCyatheacidites (Filicopsida): systematic and evolutionary implications. Pl. Syst. Evol. 157: 85–94.Google Scholar
  159. Kuyl, O. S., J. Muller &H. Th. Waterblok. 1955. The application of palynology to oil geology with special reference to western Venezuela. Geol. & Mijnb. no. 3, n.s. 17: 49–76.Google Scholar
  160. Kvacek, Z. 1994. Connecting links between the Arctic Palaeogene and European Tertiary floras. Pages 251–266.In: M. C. Boulter & H. C. Fisher editors. Cenozoic plants and climates of the Arctic. Springer-Verlag, Berlin.Google Scholar
  161. — 1998. Bílina: a window on early Miocene marshland environments. Rev. Palaeobot. Palynol. 101: 111–123.Google Scholar
  162. — &L. Hably. 1991. Notes on the Egerian stratotype flora at Eger (Wind brickyard), Hungary, upper Oligocene. Ann. Hist.-Nat. Mus. Natl. Hung. 83: 49–82.Google Scholar
  163. — &S. R. Manchester. 1999.Eostangeria Barthel (extinct Cycadales) from the Palaeogene of western North America and Europe. Int. J. Pl. Sci. 160: 621–629.Google Scholar
  164. — &S. B. Manum. 1993. Ferns in the Spitsbergen Palaeogene. Palaeontographica Abt. B. Paläophytol. 230: 169–181.Google Scholar
  165. — &H. Walther. 1998. The Oligocene volcanic flora of Kundratice near Litomerice, Ceske Stredohori volcanic complex (Czech republic)—a review. Sborn. Nár. Mus. v Praze, Rada B, Prir. Vedy 54: 1–42.Google Scholar
  166. Lamotte, R. S. 1952. Catalogue of the Cenozoic plants of North America through 1950. Mem. Geol. Soc. Amer. 51: 1–381.Google Scholar
  167. Lancucka-Srodoniowa, M. 1958.Salvinia andAzolla in the Miocene of Poland. Acta Biol. Cracov., Ser. Bot. 1: 15–23.Google Scholar
  168. Lantz, T. C., G. W. Rothwell &R. A. Stockey. 1999. Conantiopteris schuchmanii, gen. et sp. nov., and the role of fossils in resolving the phylogeny of Cyatheaceae s.l. J. Pl. Res. 112: 361–381.Google Scholar
  169. Lavrenko, O. D. &L. I. Fot'janova. 1994. Some early Palaeogene species from western Kamtchatka. Pages 315–325.In: M. C. Boulter & H. C. Fisher editors. Cenozoic plants and climates of the Arctic. Springer-Verlag, Berlin.Google Scholar
  170. Lelono, E. B. 2000. Palynological study of the Eocene Nanggulan Formation, Central Java, Indonesia. Ph.D. thesis. University of London.Google Scholar
  171. Lerbekmo, J. F., A. R. Sweet &R. M. St. Louis. 1987. The relationship between the iridium anomaly and palynological floral events at three Cretaceous—Tertiary boundary localities in western Canada. Bull. Geol. Soc. Amer. 99: 325–330.Google Scholar
  172. Lidgard, S. &P. R. Crane. 1990. Angiosperm diversification and Cretaceous floristic trends: a comparison of palynofloras and leaf macrofloras. Paleobiology 16: 77–93.Google Scholar
  173. Lupia, R., S. Lidgard &P. R. Crane. 1999. Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology 25: 305–340.Google Scholar
  174. MacGinitie, H. D. 1969. The Eocene Green River flora of northwestern Colorado and northeastern Utah. Univ. Calif. Publ. Geol. Sci. 83: 1–203.Google Scholar
  175. — 1974. An early middle Eocene flora from the Yellowstone-Absaroka volcanic Province. north western Wind River Basin, Wyoming. Univ. Calif. Publ. Geol. Sci. 108: 1–103.Google Scholar
  176. Machin, J. 1971. Plant microfossils from Tertiary deposits of the Isle of Wight. New Phytol. 70: 851–872.Google Scholar
  177. Macphail, M. K., N. F. Alley, E. M. Truswell &I. R. K. Sluiter. 1994. Early Tertiary vegetation: evidence from spores and pollen. Pages 189–261.In: R. S. Hill editor. History of the Australian vegetation: Cretaceous to Recent. Cambridge University Press, Cambridge.Google Scholar
  178. Mai, D. H. 1985. Entwicklung der wasser- und Sumpfpflanzen-Gesellschaften Europas von der Kreid bis ins Quartär. Flora 176: 449–511.Google Scholar
  179. — 1995. Tertiäre Vegetationsgeschichte Europas. Gustav Fischer, Jena.Google Scholar
  180. — &H. Walther. 1978. Die Floren der Haselbacher Serie im Weiselster-Becken (Bezirk Leipzig, DDR). Abh. Staatl. Mus. Miner. Geol. Dresd. 28: 1–200 + pls. 1–102.Google Scholar
  181. ——. 1985. Die obereozänen Floren des Weisselster-Beckens und seiner Randgebiete. Abh. Staatl. Mus. Miner. geol. Dresd. 33: 1–260.Google Scholar
  182. ——. 1991. Die Oligozänen und untermiozänen Floren NW-Sachsens und des Bitterfelder Raumes. Adh. Staatl. Mus. Miner. geol. Dresd. 38: 1–230 +48 pls. + 1 map.Google Scholar
  183. Manchester, S. R. 1994. Fruits and seeds of the middle Eocene Nut Beds Flora, Clarno Formation, Oregon. Palaeontogr. Amer. 58 1–205.Google Scholar
  184. — 1999. Biogeographical relationships of North American Tertiary floras. Ann. Missouri Bot. Gard. 86: 472–522.Google Scholar
  185. — &M. S. Zavada. 1987.Lygodium foliage with intact sorophores from the Eocene of Wyoming. Bot. Gaz. 148: 392–399.Google Scholar
  186. —,M. E. Collinson &K. Goth. 1994. Fruits of the Juglandaceae from the Eocene of Messel, Germany and implications for early Tertiary phytogeographic exchange between Europe and western North America. Int. J. Pl. Sci. 155: 388–394.Google Scholar
  187. Martin, H. A. 1979. Stratigraphic palynology of the Mooki Valley, New South Wales. J. Proc. Roy. Soc. N.S.W. 112: 71–78.Google Scholar
  188. — 1980. Stratigraphic palynology from shallow bores in the Namoi River and Gwydir River Valleys, North Central New South Wales. J. Proc. Roy. Soc. N.S.W. 113: 81–87.Google Scholar
  189. — 1981. Stratigraphic palynology of the Casterleigh River Valley, New South Wales. J. Proc. Roy. Soc. N.S.W. 114: 77–84.Google Scholar
  190. Matsuo, H. 1963. The Notonakajima flora of Noto Peninsular. Pages 219–243 +pls. 41–56.In: Tertiary floras of Japan, Miocene floras. The collaborating Association to commemorate the 80th anniversary of the Geological Survey of Japan, Geological Survey of Japan. Tokyo.Google Scholar
  191. May, F. E. 1972 A survey from several coal-bearing horizons of Utah. Utah Geol. Min. Surv. Monogr. 3: 397–542 + 7 figs. + 32 pls.Google Scholar
  192. McIver, E. E. &J. F. Basinger. 1993. Flora of the Ravenscrag Formation (Paleocene), southwestern Saskatchewan, Canada. Palaeontogr. Canad. 10: 1–167.Google Scholar
  193. ——. 1993. Early Tertiary floral evolution in the Canadian High Arctic. Ann. Missouri Bot. Gard. 86: 523–545.Google Scholar
  194. McLean, D. M. 1968. Reworked palynomorphs in the Paleocene Naheola Formation of southwest Alabama. J. Paleontol. 42: 1478–1485.Google Scholar
  195. Menendez, C. A. 1961. Estípite petrificado de una nueva Cyatheaceae del Terciario de Neuquén. Bol. Soc. Argent. Bot., 9: 331–358.Google Scholar
  196. Mihajlovic, D. 1990. Paleogene flora of Yugoslavia (a review). Pages 141–146.In: E. Knobloch & Z. Kvacek editors. Proceedings of the Symposium Palaeofloristic and Palaeoclimatic Changes in the Cretaceous and Tertiary. Geological Survey Publisher, Prague.Google Scholar
  197. Miller, C. N. 1967. Evolution of the ferns genusOsmunda. Contr. Mus. Paleontol. Univ. Michigan 21: 139–203 + 4 pls.Google Scholar
  198. — 1971. Evolution of the fern family Osmundaceae based on anatomical studies. Contr. Mus. Paleontol. Univ. Michigan 23: 105–169.Google Scholar
  199. — 1982.Osmunda wehrii, a new species based on petrified rhizomes from the Miocene of Washington. Amer. J. Bot. 69: 116–121.Google Scholar
  200. Mohr, B. A. R. &D. B. Lazarus. 1994. Paleobiogeographic distribution ofKuylisporites and its possible relationship to the extant fern genusCnemidaria (Cyatheaceae). Ann. Missouri Bot. Gard. 81: 758–767.Google Scholar
  201. Morley, R. J. 1998. Palynological evidence for tertiary plant dispersals in the SE Asian region in relation to plate tectonics and climate. Pages 211–234.In: R. Hall & J. D. Holloway editors. Biogeography and geological evolution of SE Asia. Backhuys, Leiden.Google Scholar
  202. — 2000. Origin and evolution of tropical rainforests. John Wiley, Chichester.Google Scholar
  203. Muller, J. 1968. Palynology of the Pedawan and Plateau Sandstone Formations (Cretaceous-Eocene) in Sarawak. Micropalaeontology 14: 1–37.Google Scholar
  204. Nambudiri, E. M. V. &S. Chitaley. 1991. FossilSalvinia andAzolla from the Deccan Intertrappean Beds of India. Rev. Palaeobot. Palynol. 69: 325–336.Google Scholar
  205. Nichols, D. J. &A. R. Sweet. 1993. Biostratigraphy of upper Cretaceous non-marine palynofloras in a North-South Transect of the western Interior Basin. Geol. Assoc. Canada Spec. Pap. 39: 539–584.Google Scholar
  206. Oishi, S. &K. Huzioka. 1941a. Studies on the Cenozoic plants of Hokkaido and Karahuto. I. Ferns from the Woodwardia sandstone of Hokkaido. J. Fac. Sci. Hokkaido Imp. Univ., Ser. 4, Geol. 6: 177–192 + pls. 39–42.Google Scholar
  207. ——. 1941b. Studies on the Cenozoic plants of Hokkaido and Karahuto. II.Salvinia natans Allioni Fossilis subsp. nov. from Karahuto andS. formosa Heer from Hokkaido. J. Fac. Sci. Hokkaido Imp. Univ., Ser. 4, Geol. 6: 193–199 + pl. 44.Google Scholar
  208. Pabst, M. B. 1968. The flora of the Chuckanut Formation of northwestern Washington. The Equisetales, Filicales, and Coniferales. Univ. Calif. Publ. Geol. Sci. 76: 1–60.Google Scholar
  209. Palamarev, E. H. &A. S. Petkova. 1987. Les fossiles de Bulgarie VIII. 1. La Macroflore du Sarmatien. Academie Bulgare des Sciences, Sofia. [In Russian with French summary]Google Scholar
  210. ——. 1990. The Paleogene macroflora of the Rhodopes region. I. Polpodiophyta-Polypodiopsida. Fitologiya 38: 3–21. [In Russian, with English summary]Google Scholar
  211. — &K. Usunova. 1992. Beitrage zur Entwicklung der Cycadeen in der Tertiarflora Europas. Courier Forschungsinst. Senckenberg 147: 287–293.Google Scholar
  212. Petrescu, I., R. Givulescu &O. Barbu. 1995. The Oligocene macro- and microflora from Cornesti-Aghires (NW of Romania)—general view. I. Ferns and conifers. Rev. de Paléobiol. 14: 209–219.Google Scholar
  213. Petriella, B. &S. Archangelsky. 1975. Vegetación y ambiente en el palaeoceno de Chubut. Actas 1 Congreso Argentino de Palaeontología y Bioestratigrafía Tucumán 2: 257–270.Google Scholar
  214. Phipps, C. J., T. N. Taylor, E. L. Taylor, N. R. Cúneo, L. D. Boucher &X. Yao. 1998.Osmunda (Osmundaceae) from the Triassic of Antarctica: an example of evolutionary stasis. Amer. J. Bot. 85: 888–895.Google Scholar
  215. Pigg, K. B. &R. A. Stockey. 1996. The significance of the Princeton Chert permineralized flora to the middle Eocene upland biota of the Okanagan Highland. Washington Geol. 24: 32–36.Google Scholar
  216. — &M. Tcherepova. 2000. Taxonomic, phytogeographic and ecological significance of the Yakima Canyon flora (middle Miocene, Washington State, USA). Amer. J. Bot. 87(6 suppl.): 74.Google Scholar
  217. Playford, G. 1982. Neogene palynomorphs from the Huon Peninsula, Papua New Guinea. Palynology 6: 29–54.Google Scholar
  218. Pocknall, D. T. 1985. Palynology of the Waikato Coal Measures (late Eocene to late Oligocene) from the Raglan area, North Island, New Zealand. New Zealand J. Geol. Geophys. 28: 329–349.Google Scholar
  219. — 1989 Late Eocene to early Miocene vegetation and climate history of New Zealand. J. Roy. Soc. New Zealand 19: 1–18.Google Scholar
  220. Poinar, G. O., Jr. 1992. Life in amber. Stanford University Press, Stanford.Google Scholar
  221. Pole, M. S. 1992. Early Miocene flora of the Manuherikia Group, New Zealand. 1. Ferns. J. Roy. Soc. New Zealand 22: 279–286.Google Scholar
  222. — 1993. Early Miocene flora of the Manuherikia Group, New Zealand. 10. Palaeoecology and stratigraphy. J. Roy. Soc. New Zealand 23: 393–426.Google Scholar
  223. — 1997. Palaeocene plant macrofossils from Kakahu, South Canterbury, New Zealand. J. Roy. Soc. New Zealand 27: 371–400.Google Scholar
  224. —,R. S. Hill, N. Green &M. K. Macphail. 1993. The Oligocene Berwick Quarry flora—rainforest in a drying environment. Austral. Syst. Bot. 6: 399–427.Google Scholar
  225. Pons, D., 1965. Sur des empreintes foliaires de Cyatheacées fossiles de Colombie. Bol. Geol. Fac. Petroleos Univ. Industriad de Santander 20: 5–24 + 10 figs. + 2 pls.Google Scholar
  226. Poole, I.. 1992. Pyritised twigs from the London Clay, Eocene, of Britain. Tertiary Res. 13: 71–85.Google Scholar
  227. — &C. N. Page. 2000. A fossil fern indicator of epiphytism in a Tertiary flora. New Phytol. 148: 117–125.Google Scholar
  228. Potonié, R. 1956. Synopsis der Gattungen der Sporae dispersae. 1. Sporites. Beih. Geol. Jahrb. 23: 1–103.Google Scholar
  229. Prasad, M., 1991. Fossil fernGoniopteris prolifera Presl from the Siwalik sediments near Nainital, North India. Curr. Sci. 60: 655–656.Google Scholar
  230. Pryer, K. 1999. Phylogeny of marsileaceous ferns and relationships of the fossilHydropteris pinnata reconsidered. Int. J. Pl. Sci. 160: 931–954.Google Scholar
  231. —,A. R. Smith &J. E. Skog. 1995. Phylogenetic relationships of extant ferns based on evidence from morphology andrbcL sequences. Amer. Fern J. 85: 205–282.Google Scholar
  232. Raine, J. I., 1984. Outline of a palynological zonation of Cretaceous to Paleogene terrestrial sediments in west coast region, South Island, New Zealand. New Zealand Geol. Surv. Rep. 109: 1–82.Google Scholar
  233. Rakosi, L. 1966 Pollen analysis of the sedimentary record of boring szentendre 2. Magyar Allami Földt. Intéz. Évi Jel. 1964: 377–387 + 1 fig. + 2 pls.Google Scholar
  234. Ratcliffe, G. E., M. A. Gandolfo, K. C. Nixon &W. L. Crepet. 1995. Sorophores of the genusLygodium Sw. (Schizaeaceae) from the late Cretaceous of New Jersey. Amer. J. Bot. 82: 90–91.Google Scholar
  235. Regali, M. S., N. Uesugui &A. S. Santos. 1974. Palinologia dos sedimentos Meso-Cenozoicos do Brazil 1–2. Petrobras Bol. Tec. Rio de Janeiro 17(3–4): 177–301 + 7 figs. + 25 pls.Google Scholar
  236. Ribbins, M. M. &M. E. Collinson. 1978. Further notes on pyritised fern rachides from the London Clay. Tertiary Res. 2: 47–50.Google Scholar
  237. Romero, E. J., 1986. Paleogene phytogeography and climatology of South America. Ann. Missouri Bot. Gard. 73: 449–461.Google Scholar
  238. — 1993. South American paleofloras. Pages 62–85.In: P. Goldblatt editor. Biological relationships between Africa and South America. Yale University Press, Hartford.Google Scholar
  239. Rothwell, G. W., 1994. Phylogenetic relationships among ferns and gymnosperms—an overview. J. Pl. Res. 107: 411–416.Google Scholar
  240. — 1996. Phylogenetic relationships of ferns: a palaeobotanical perspective. Pages 395–404.In: J. M. Camus, M. Gibby & R. J. Johns editors. Pteridology in perspective. Royal Botanic Gardens, Kew.Google Scholar
  241. — &R. A. Stockey. 1989. Fossil Ophioglossaceae in the Paleocene of western North America. Amer. J. Bot. 76: 637–644.Google Scholar
  242. —— 1991.Onoclea sensibilis in the Paleocene of North America, a dramatic example of structural and ecological stasis. Rev. Palaeobot Palynol. 70: 113–124.Google Scholar
  243. —— 1994. The role ofHydropteris pinnata gen. et sp. nov. in reconstructing the cladistics of heterosporous ferns. Amer. J. Bot. 81: 479–492.Google Scholar
  244. —— &H. Nishida. 1994. Filicaleans of the middle Eocene Princeton chert: I. A dryopteroid species. Amer. J. Bot. 81 (6 suppl.): 101–102.Google Scholar
  245. —,E. E. Arnone &K. B. Pigg. 1996. Miocene ferns from central Washington State: anatomy and systematics. Amer. J. Bot. 83(6 suppl.): 131.Google Scholar
  246. Rozefelds, A. C., D. C. Christophel &N. F. Alley. 1992. Tertiary occurrence of the fernLygodium (Schizaeaceae) in Australia and New Zealand. Mem. Queensland Mus. 32: 203–222.Google Scholar
  247. Sah, S. C. D.. 1967. Palynology of an upper Neogene profile from Rusizi Valley—Burundi. Ann. Mus. Roy. Afrique Centr., Sci. Geol. 57: 1–173 + 54 figs. + 1 diagram + 2 tabs. + 13 pls.Google Scholar
  248. Saporta, G. de 1868. Prodrome d'une flore fossile des travertins anciens de Sézanne. Mém. Soc. Géol. France 2nd ser., Vol. 8 Mem. no. 3: 289–437 + 15 pls.Google Scholar
  249. Saunders, R. M. K. &K. Fowler. 1993. The supraspecific taxonomy and evolution of the fern genusAzolla (Azollaceae). Pl. Syst. Evol. 184: 175–193.Google Scholar
  250. Schrank, E. 1964. Nonmarine Cretaceous palynology of northern Kordofan, Sudan, with notes on fossil Salviniales (water ferns). Geol. Rundschau 83: 773–786.Google Scholar
  251. Serbet, R. &G. W. Rothwell. 1999.Osmunda cinnamomea (Osmundaceae) in the upper Cretaceous of western North America: additional evidence for exceptional species longevity in filicalean ferns. Int. J. Pl. Sci. 160: 425–433.Google Scholar
  252. Shaparenko, K. K. 1956. Istoria Salvinii. Trudy Bot. Inst. Komarova Akad. Nauk S.S.S.R. ser. 8, Paleobot., Fasc. II: 7–44 +3 pls. [In Russian]Google Scholar
  253. Skog, J. E.. 1982.Pelletixia amelguita—a new species of fossil fern in the Potomac group (lower Cretaceous). Amer. Fern J. 72: 115–124.Google Scholar
  254. —. 1992. The lower Cretaceous ferns in the genusAnemia (Schizaeaceae), Potomac Group of Virginia, and relationships within the genus. Rev. Palaeobot. Palynol. 70: 279–295.Google Scholar
  255. — 2001. The biogeography of Mesozoic leptosporangiate ferns related to extant ferns. Brittonia 53: 236–269.Google Scholar
  256. — &D. L. Dilcher. 1992. A new species ofMarsilea from the Dakota Formation in central Kansas. Amer. J. Bot. 79: 982–988.Google Scholar
  257. Smith, H. V. 1938. Some new and interesting plants from Sucker Creek, Idaho-Oregon boundary. Bull. Torrey Bot. Club 65: 557–564.Google Scholar
  258. Spicer, R. A., K. S. Davies &A. B. Herman. 1994. Circum-Arctic plant fossils and the Cretaceous-Tertiary transition. Pages 127–149.In: M. C. Boulter & H. C. Fisher editors. Cenozoic plants and climates of the Arctic. Springer-Verlag, Berlin.Google Scholar
  259. Squinabol, S. 1889. Contribuzioni alla flora fossile dei terreni terziarii della Liguria. T. II. Genova. 1–43.Google Scholar
  260. Stevenson, D. W. &H. Loconte. 1996. Ordinal and familial relationships of pteridophyte genera. Pages 435–467.In: J. M. Camus, M. Gibby & R. J. Johns editors. Pteridology in perspective. Royal Botanic Gardens, Kew.Google Scholar
  261. Stockey, R. A. &S. Y. Smith. 2000. A new species ofMillerocaulis (Osmundaceae) from the lower Cretaceous of California. Int. J. Pl. Sci. 161: 159–166.Google Scholar
  262. —,H. Nishida &G. Rothwell. 1999. Permineralized ferns from the middle Eocene Princeton Chert. I.:Makotopteris princetonensis gen. et sp. nov. (Athyriaceae). Int. J. Pl. Sci. 160: 1047–1055.Google Scholar
  263. Stockmans, F. 1936. Vegetaux Eocenes des environs de Bruxelles. Mém Mus. Roy. Hist. Nat. Belgique 76: 1–56.Google Scholar
  264. Stover, L. E. &A. D. Partridge. 1973. Tertiary and late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. Proc. Roy. Soc. Victoria 85: 237–286.Google Scholar
  265. Teslenko, J. V. 1990. Floristic and paleoclimatic changes in Palaeogene and Neogene times over the territory of the Ukraine. Pages 115–118.In: E. Knobloch & Z. Kvacek editors. Proceedings of the Symposium Palaeofloristic and Palaeoclimatic Changes in the Cretaceous and Tertiary. Geological Survey Publisher, Prague.Google Scholar
  266. Tidwell, W. D. 1994.Ashicaulis, a new genus for some species of Millerocaulis (Osmundaceae). Sida 16: 253–261.Google Scholar
  267. — &S. R. Ash. 1994. A review of selected Triassic to early Cretaceous ferns. J. Pl. Res. 107: 417–442.Google Scholar
  268. — &D. A. Medlyn. 1991. Two new species ofAurealcaulis (Osmundaceae) from northwestern New Mexico. Great Basin Naturalist 51: 325–335.Google Scholar
  269. — &H. Nishida. 1993. A new fossilized tree fern stem,Nishidacaulis burgii gen, et sp. nov., from Nebraska-South Dakota, USA. Rev. Palaeobot. Palynol. 78: 55–67.Google Scholar
  270. — &L. R. Parker. 1987.Aurealcaulis crossi gen. et sp. nov., an arborescent, osmundaceous trunk for the Fort Union Formation (Paleocene), Wyoming. Amer. J. Bot. 74: 803–812.Google Scholar
  271. — &J. E. Skog. 1992. Two new fossil matoniaceous stem genera from Tasmania, Australia. Rev. Palaeobot. Palynol. 70: 362–277.Google Scholar
  272. Tiffney, B. H. 1994. An estimate of the early Tertiary paleoclimate of the southern Arctic. Pages 267–295.In: M. C Boulter & H. C. Fisher editors. Cenozoic plants and climates of the Arctic. Springer-Verlag, Berlin.Google Scholar
  273. Torres, T. G. &H. Meon. 1993.Lophosoria from the Tertiary of King George Island and Central Chile: origin and dispersion in the Southern Hemisphere. Bol. Inst. Antárt. Chileno, Ser. Ci. 43: 18–30.Google Scholar
  274. Truswell, E. M., I. R. Sluiter &W. K. Harris. 1985. Palynology of the Oligocene-Miocene sequence in the Oakvale 1 corehole, western Murray Basin, south Australia. BMR J. Austral. Geol. Geophys. 9: 267–295.Google Scholar
  275. Tryon, A. F. &B. Lugardon. 1991. Spores of the Pteridophyta. Springer-Verlag, Berlin.Google Scholar
  276. Van Bergen, P. F., M. E. Collinson &J. W. De Leeuw. 1993. Chemical composition and ultrastructure of fossil and extant microspore massulae and megaspores. Grana 1993 Suppl. 1: 18–30.Google Scholar
  277. ——,D. E. G. Briggs, J. W. De Leeuw, A. C. Scott, R. P. Evershed &P. Finch. 1995. Resistant biomacromolecules in the fossil record. Acta Bot. Neerl. 44: 319–342.Google Scholar
  278. Vanhoorne, R. 1992.Azolla andSalvinia species (Azollaceae and Salviniaceae, Pteridophyta), from the Caenozoic of Belgium. Bull. de Inst. Roy. Sci. Nat. Belgique, Sci. Terre 62: 229–255.Google Scholar
  279. Van Konijnenburg-van Cittert, J. H. A. 1989. Dicksoniaceous sporesin situ from the Jurassic of Yorkshire, England. Rev. Palaeobot. Palynol. 61: 273–301.Google Scholar
  280. — 1991. Diversification of spores in fossil and extant Schizaeaceae. Pages 103–118.In: S. Blackmore & S. H. Barnes editors. Pollen and spores. Systematics Association Special Volume No. 44. Clarendon Press, Oxford.Google Scholar
  281. —. 1993. A review of the Matoniaceae based onin situ spores. Rev. Palaeobot. Palynol. 78: 235–267.Google Scholar
  282. — &M. H. Kurmann. 1994. Comparative ultrastructure of living and fossil matoniaceous spores (Pteridophyta). Pages 67–86.In: M. H. Kurmann & J. A. Doyle editors. Ultrastructure of fossil spores and pollen. Royal Botanic Gardens, Kew.Google Scholar
  283. Voronova, M. A. 1993. Evolution of some Cretaceous ferns in European Paleofloristic province. Pages 11–16.In: E. Planderová, M. Konzálová, Z. Kvacek, et al. editors. Paleofloristic and palaeoclimatic changes during Cretaceous and Tertiary. Konferencie. Sympoziá. Semináre, Geologicky Ústavu Dionyza Stúra, Bratislava.Google Scholar
  284. Walther, H.. 1999. Die Tertiär flora von Kleinsaubernitz bei Bautzen. Palaeontographica Abt. B, Paläophytol. 249: 63–174.Google Scholar
  285. Watson, J. 1969. Revision of the English Wealden flora, 1. Charales-Ginkgoales. Bull. Brit. Mus. (Nat. Hist.) Geol. 7: 207–254 +pls. 1–6.Google Scholar
  286. Weber, R. 1973.Salvinia coahuilensis nov. sp. del Cretacio Superior de Mexico. Ameghiniana 10: 173–190.Google Scholar
  287. WGCPC (The writing group of Cenozoic plants of China). 1978. The Cenozoic plants from China. Fossil Plants of China. Vol. 3. Science Press, Beijing. [In Chinese].Google Scholar
  288. Wilde, V. 1989. Untersuchungen zur Systematik der Blattreste aus dem Mitteleozän der Grube Messel bei Darmstadt (Hessen, Bundesrepublik Deutschland). Courier Forschungsinst. Senckenberg 115: 1–213.Google Scholar
  289. — &H. Frankenhäuser. 1998. The middle Eocene plant taphocoenosis from Eckfeld (Eifel, Germany). Rev. Palaeobot. Palynol. 101: 7–28.Google Scholar
  290. Wilf, P., K. C. Beard, K. S. Davies-Vollum &J. W. Norejko. 1998. Portrait of a late Paleocene (early Clarkforkian) terrestrial ecosystem: big multi quarry and associated strata, Washakie Basin, southwestern Wyoming. Palaios 13: 514–532.Google Scholar
  291. Wing, S. L. 1987. Eocene and Oligocene floras and vegetation of the Rocky Mountains. Ann. Missouri Bot. Gard. 74: 748–784.Google Scholar
  292. — 1998. Late Paleocene-early Eocene floral and climatic change in the Bighorn Basin, Wyoming. Pages 380–400.In: M. P. Aubry, S. Lucas & W. A. Berggren editors. Late Paleocene-early Eocene climatic and biotic events in the marine and terrestrial realms. Columbia University Press, New York.Google Scholar
  293. Wolf, P. G. 1996. Pteridophyte phylogenies based on an analysis of DNA sequences: a multiple gene approach. Pages 203–215.In: J. M. Camus, M. Gibby & R. J. Johns editors. Pteriodology in perspective. Royal Botanic Gardens, Kew.Google Scholar
  294. Wolfe, J. A. 1977. Paleogene floras from the Gulf of Alaska region. Prof. Pap. U.S. Geol. Surv. 997: 1–108 + 30 pls.Google Scholar
  295. — &G. R. Upchurch. 1986. Vegetation, climatic and floral changes at the Cretaceous-Tertiary boundary. Nature 324: 148–151.Google Scholar
  296. ——. 1987. Leaf assemblages across the Cretaceous-Tertiary boundary in the Raton Basin, New Mexico and Colorado. Proc. Natl. Acad. Sci. U.S.A. 84: 5096–5100.PubMedGoogle Scholar
  297. Ziegler, A. M., C. R. Scotese &S. F. Barrett. 1983. Mesozoic and Cainozoic paleogeographic maps. Pages 240–252.In: P. Brosche & J. Sündermann editors. Tidal friction and the Earth's rotation II. Springer-Verlag, Berlin.Google Scholar

Copyright information

© The New York Botanical Garden Press 2001

Authors and Affiliations

  • Margaret E. Collinson
    • 1
  1. 1.Department of GeologyRoyal Holloway University of LondonEghamEngland

Personalised recommendations