Advertisement

Israel Journal of Mathematics

, Volume 119, Issue 1, pp 55–91 | Cite as

Two-player stochastic games I: A reduction

  • Nicolas Vieille
Article

Abstract

This paper is the first step in the proof of existence of equilibrium payoffs for two-player stochastic games with finite state and action sets. It reduces the existence problem to the class of so-called positive absorbing recursive games. The existence problem for this class is solved in a subsequent paper.

Keywords

Average Payoff Stationary Strategy Stochastic Game Equilibrium Payoff Exit Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. J. Aumann and M. B. Maschler with the collaboration of R. E. Stearns,Repeated Games with Incomplete Information, MIT Press, Cambridge, 1995.zbMATHGoogle Scholar
  2. [2]
    T. Bewley and E. Kohlberg,The asymptotic solution of a recursion equation occurring in stochastic games, Mathematics of Operations Research1 (1976), 321–336.zbMATHMathSciNetGoogle Scholar
  3. [3]
    T. Bewley and E. Kohlberg,The asymptotic theory of stochastic games, Mathematics of Operations Research1 (1976), 197–208.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    T. Bewley and E. Kohlberg,On stochastic games with stationary optimal strategies, Mathematics of Operations Research3 (1978), 104–125.zbMATHMathSciNetGoogle Scholar
  5. [5]
    D. Blackwell,Discounted dynamic programming, Annals of Mathematical Statistics336 (1965), 226–235.CrossRefMathSciNetGoogle Scholar
  6. [6]
    D. Blackwell and T. S. Ferguson,The big match, Annals of Mathematical Statistics39 (1968), 159–163.CrossRefMathSciNetzbMATHGoogle Scholar
  7. [7]
    H. Everett,Recursive games, inContributions to the Theory of Games, Vol. III (M. Dresher, A. W. Tucker and P. Wolfe, eds.), Princeton University Press, Princeton, N.J., 1957, pp. 47–78.Google Scholar
  8. [8]
    A. M. Fink,Equilibrium in a stochastic n-person game, Journal of Science of Hiroshima University28 (1964), 89–93.zbMATHMathSciNetGoogle Scholar
  9. [9]
    D. Gillette,Stochastic games with zero-stop probabilities, inContributions to the Theory of Games, Vol. III (M. Dresher, A. W. Tucker and P. Wolfe, eds.), Princeton University Press, Princeton, N.J., 1957, pp. 179–187.Google Scholar
  10. [10]
    E. Kohlberg,Repeated games with absorbing states, The Annals of Statistics2 (1974), 724–738.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    J. F. Mertens and A. Neyman,Stochastic games, International Journal of Game Theory10 (1981), 53–56.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    J. F. Mertens and A. Neyman,Stochastic games have a value, Proceedings of the National Academy of Sciences of the United States of America79 (1982), 2145–2146.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    J. F. Mertens and T. P. Parthasarathy,Non zero-sum stochastic games, inStochastic Games and Related Topics (T. E. S. Raghavan et al., eds.), Kluwer Academic Publishers, Dordrecht, 1991, pp. 145–148.Google Scholar
  14. [14]
    J. F. Mertens, S. Sorin and S. Zamir,Repeated games part b the central results, CORE Discussion Paper 9421, 1994.Google Scholar
  15. [15]
    J. Milnor and L. S. Shapley,Ruin games, inContributions to the Theory of Games, Vol. III (M. Dresher, A. W. Tucker and P. Wolfe, eds.), Princeton University Press, Princeton, N.J., 1957, pp. 15–45.Google Scholar
  16. [16]
    T. E. S. Raghavan, S. H. Tijs and O. J. Vrieze,On stochastic games with additive reward and transition structure, Journal of Optimization Theory and Applications47 (1985), 451–464.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    L. S. Shapley,Stochastic games, Proceedings of the National Academy of Sciences of the United States of America39 (1953), 1095–1100.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    E. Solan,Three-player absorbing games, Mathematics of Operations Research24 (1999), 669–698.zbMATHMathSciNetGoogle Scholar
  19. [19]
    S. Sorin,Asymptotic properties of a non-zero sum stochastic game, International Journal of Game Theory11 (1986), 147–160.zbMATHMathSciNetGoogle Scholar
  20. [20]
    F. Thuijsman and T. E. S. Raghavan,Perfect information stochastic games and related classes, International Journal of Game Theory26 (1997), 403–408.zbMATHMathSciNetGoogle Scholar
  21. [21]
    N. Vieille,Contributions à la Théorie Des Jeux Répétés, PhD thesis, Université Paris 6—Pierre et Marie Curie, 1992.Google Scholar
  22. [22]
    N. Vieille,On equilibria in undiscounted stochastic games, Technical Report 9446, CEREMADE, 1994.Google Scholar
  23. [23]
    N. Vieille,Two-player stochastic games II: The case of recursive games, Israel Journal of Mathematics, this volume, pp. 93–126.Google Scholar
  24. [24]
    O. J. Vrieze and F. Thuijsman,On equilibria in stochastic games with absorbing states, International Journal of Game Theory18 (1989), 293–310.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Hebrew University Magnes Press 2000

Authors and Affiliations

  • Nicolas Vieille
    • 1
    • 2
  1. 1.Laboratoire d'EconométrieEcole PolytechniqueParisFrance
  2. 2.GrapeUniversité Montesquieu Bordeaux 4PessacFrance

Personalised recommendations