Numerical Algorithms

, Volume 38, Issue 1–3, pp 173–196 | Cite as

The use of Chebyshev Polynomials in the space-time least-squares spectral element method

Section II: Spectral Methods

Abstract

Chebyshev polynomials of the first kind are employed in a space-time least-squares spectral element formulation applied to linear and nonlinear hyperbolic scalar equations. No stabilization techniques are required to render a stable, high order accurate scheme. In parts of the domain where the underlying exact solution is smooth, the scheme exhibits exponential convergence with polynomial enrichment, whereas in parts of the domain where the underlying exact solution contains discontinuities the solution displays a Gibbs-like behavior. An edge detection method is employed to determine the position of the discontinuity. Piecewise reconstruction of the numerical solution retrieves a monotone solution. Numerical results will be given in which the capabilities of the space-time formulation to capture discontinuities will be demonstrated.

Keywords

Chebyshev polynomials hyperbolic equations least-squares spectral element method shock capturing 

AMS subject classification

65M12 65M70 41A50 65P40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Bochev, Z. Cai, T.A. Manteuffel and S.F. McCormick, Analysis of velocity-flux first order system least-squares principles for the Navier-Stokes equations: Part I, SIAM J. Numer. Anal. 35 (1998) 990–1009.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    P. Bochev, T. A. Manteuffel and S.F. McCormick, Analysis of velocity-flux first order system leastsquares principles for the Navier-Stokes equations: Part II, SIAM J. Numer. Anal. 36 (1999) 1125–1144.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    P.B. Bochev, Analysis of least-squares finite element methods for the Navier-Stokes equations, SIAM J. Numer. Anal. 34 (1997) 1817–1844.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    P.B. Bochev, Finite element methods based on least-squares and modified variational principles, Technical Report, POSTECH (2001).Google Scholar
  5. [5]
    P.B. Bochev and M.D. Gunzburger, A least-squares finite element method for the Navier-Stokes equations, Appl. Math. Lett. 6 (1993) 27–30.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    P.B. Bochev and M.D. Gunzburger, Analysis of least-squares finite element methods for the Stokes problem, Math. Comp. 63 (1994) 479–506.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    P.B. Bochev and M.D. Gunzburger, Least-squares finite element methods for the velocity-pressurestress formulation of the Stokes equations, Comput. Methods Appl. Mech. Engrg. 126 (1995) 267–287.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    P.B. Bochev and M.D. Gunzburger, Finite element methods of least-squares type, SIAM Rev. 27 (1998) 789–837.CrossRefMathSciNetGoogle Scholar
  9. [9]
    C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang,Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics (Springer, Berlin, 1987).Google Scholar
  10. [10]
    D.C. Chan, Least-squares spectral element methods for the simulation of unsteady fluid dynamic and wave propagation phenomena, http://www.llnl.gov/CASC/calendar/chan.html (1997).Google Scholar
  11. [11]
    A. Gelb and E. Tadmor, Enhanced spectral viscosity approximations for conservation laws, Appl. Numer. Math. 33 (2000) 3–21.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    D. Gottlieb and J.S. Hesthaven, Spectral methods for hyperbolic problems J. Comput. Appl. Math. 128 (2001) 83–131.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    D. Gottlieb and C.W. Shu, On the Gibbs phenomenon and its resolution, SIAM Rev. 39 (1997) 644–668.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    B.N. Jiang, A least-squares finite element method for incompressible Navier-Stokes problems, Internat. J. Numer. Methods Fluids 14(7) (1992) 843–859.MATHCrossRefGoogle Scholar
  15. [15]
    B.N. Jiang,The Least-Squares Finite Element Method, Theory and Applications in Computational Fluid Dynamics and Electromagnetics (Springer, Berlin, 1998).Google Scholar
  16. [16]
    B.N. Jiang, On the least-squares method, Comput. Methods Appl Mech. Engrg. 152 (1998) 239–257.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    B.N. Jiang and C.L. Chang, Least-squares finite elements for the Stokes problem, Comput. Methods Appl. Mech. Engrg. 78 (1990) 297–311.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    B.N. Jiang, T.L. Lin and L.A. Povinelli, Large-scale computation of incompressible viscous flow by least-squares finite element method, Comput. Methods Appl. Mech. Engrg. 114 (1994) 213–231.CrossRefMathSciNetGoogle Scholar
  19. [19]
    B.N. Jiang and L.A. Povinelli, Least-squares finite element method for fluid dynamics, Comput. Methods Appl. Mech. Engrg. 81 (1990) 13–37.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    G.E. Karniadakis and S.J. Spencer,Spectral/hp Element Methods for CFD (Oxford Univ. Press, Oxford, 1999).MATHGoogle Scholar
  21. [21]
    C.B. Laney,Computational Gasdynamics (Cambridge Univ. Press, Cambridge, 1998).MATHGoogle Scholar
  22. [22]
    W.H. Lin, A least-squares spectral element method for sound propagation in acoustic ducts, J. Acoust. Soc. Amer. 104 (1998) 3111–3114.CrossRefGoogle Scholar
  23. [23]
    B. De. Maerschalck, Space-time least-squares spectral element method for unsteady flows—application and evaluation for linear and nonlinear hyperbolic scalar equations, http://www.hsa.lr.tudelft.nl/~marc/ST-LSQSEM.pdf (2003).Google Scholar
  24. [24]
    J.C. Mason and D.C. Handscomb,Chebyshev Polynomials (Chapman and Hall/CRC, 2003).Google Scholar
  25. [25]
    M.M.J. Proot, The least-squares spectral element method—theory, implementation and application to incompressible flows Ph.D. thesis, TU Delft (2003).Google Scholar
  26. [26]
    M.M.J. Proot and M.I. Gerritsma, A least-squares spectral element formulation for the Stokes problem, J. Sci. Comput. 17 (2002) 285–296.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    M.M.J. Proot and M.I. Gerritsma, Least-squares spectral elements applied to the Stokes problem, J. Comput. Phys. 181 (2002) 454–477.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.von Karman Institute for Fluid DynamicsSint-Genesius-RodeBelgium
  2. 2.Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations