Israel Journal of Mathematics

, Volume 79, Issue 2–3, pp 331–365

A grothendieck factorization theorem on 2-convex schatten spaces

  • Françoise Lust-Piquard


We prove that for every bounded linear operatorT:C2pH(1≤p<∞,H is a Hilbert space,C2pp is the Schatten space) there exists a continuous linear formf onCp such thatf≥0, ‖f‖(CCp)*=1 and
$$\forall x \in C^{2p} , \left\| {T(x)} \right\| \leqslant 2\sqrt 2 \left\| T \right\|< f\frac{{x * x + xx*}}{2} > 1/2$$
. Forp=∞ this non-commutative analogue of Grothendieck’s theorem was first proved by G. Pisier. In the above statement the Schatten spaceC2p can be replaced byEE2 whereE(2) is the 2-convexification of the symmetric sequence spaceE, andf is a continuous linear form onCE. The statement can also be extended toLE{(su2)}(M, τ) whereM is a Von Neumann algebra,τ a trace onM, E a symmetric function space.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AL]
    J. Arazy and P. K. Lin,On p-convexity and q-concavity of unitary matrix spaces, Integral Equations and Operator Theory8 (1985), 295–313.MATHCrossRefMathSciNetGoogle Scholar
  2. [A]
    J. Arazy,On the geometry of the unit ball of unitary matrix spaces, Integral Equations and Operator Theory4/2 (1981), 151–171.CrossRefMathSciNetGoogle Scholar
  3. [B]
    B. Beauzamy,Introduction to Banach Spaces and Their Geometry, North Holland, Notes de Mathematica, 66, 2nd ed., 1985.Google Scholar
  4. [D]
    J. Dixmier,Formes linéaires sur un anneau d’opérateurs, Bull. Soc. Math. France81 (1953), 9–39.MATHMathSciNetGoogle Scholar
  5. [DS]
    N. Dunford and J.T. Schwartz,Linear Operators, Vol. I, Pure and Applied Math., 1967.Google Scholar
  6. [DU]
    J. Diestel and J.J. Uhl,Vector measures, Math. Surveys No. 15 (1977).Google Scholar
  7. [FK]
    T. Fack and H. Kosaki,Generalized s-numbers of τ-measurable operators, Pacific J. Math.123 (1986), 269–300.MATHMathSciNetGoogle Scholar
  8. [GTJ]
    D.J.H. Garling and N. Tomczak-Jaegermann,The cotype and uniform convexity of unitary ideals, Israel J. Math.45 (1983), 175–197.MATHCrossRefMathSciNetGoogle Scholar
  9. [H]
    U. Haagerup,Solution of the similarity problem for cyclic representations of C* algebras, Ann.Math.118 (1983), 215–240.CrossRefMathSciNetGoogle Scholar
  10. [Kai]
    S. Kaijser,A simple minded proof of the Pisier-Grothendieck inequality, Proc. Univ. Connecticut (1980–81), Lecture Notes in Math., Vol. 995, Springer-Verlag, Berlin, pp. 33–35.Google Scholar
  11. [K]
    T. Kato,Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin, 1976.MATHGoogle Scholar
  12. [LP-P]
    F. Lust-Piquard and G. Pisier,Non-commutative Khintchine and Paley inequalities, Arkiv für Math.29 (1991), 241–260.MATHCrossRefMathSciNetGoogle Scholar
  13. [LT]
    J. Lindenstrauss and L. Tzafriri,Classical Banach Spaces II, Springer-Verlag, Berlin, 1979.MATHGoogle Scholar
  14. [M]
    B. Maurey,Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L p, Astérisque 11 (1974).Google Scholar
  15. [P1]
    G. Pisier,Grothendieck’s theorem for non commutative C* algebras with an appendix on Grothendieck’s constant, J. Funct. Anal.29 (1978), 397–415.MATHCrossRefMathSciNetGoogle Scholar
  16. [P2]
    G. Pisier,Factorization of linear operators and geometry of Banacah spaces, AMS Regional Conference Series in Math. 60 (1986).Google Scholar
  17. [R]
    W. Rudin,Functional Analysis, McGraw-Hill, New York, 1973.MATHGoogle Scholar
  18. [S]
    B. Simon,Trace Ideals and their Applications, London Math. Soc. Lecture Notes Series 35.Google Scholar
  19. [T]
    M. Takesaki,Theory of Operator Algebras, Springer-Verlag, Berlin, 1979.MATHGoogle Scholar
  20. [TJ]
    N. Tomczak-Jaegermann,Uniform convexity of unitary ideals, Israel J. Math.48 (1984), 249–254.MATHCrossRefMathSciNetGoogle Scholar
  21. [X1]
    Q. Xu,Analytic functions with values in lattices and symmetric spaces of measurable operators, Math. Proc. Cambridge Phil. Soc.109 (1991), 541–563.MATHCrossRefGoogle Scholar
  22. [X2]
    Q. Xu,Convexité uniforme des espaces symétriques d’opérateurs measurables, C.R. Acad. Sci. Paris309 (1989), 251–254.MATHGoogle Scholar
  23. [X3]
    Q. Xu,Radon Nikodym property in symmetric spaces of measurable operators, Proc. Am. Math. Soc.115 (1992), 329–335.MATHCrossRefGoogle Scholar

Copyright information

© Hebrew University 1992

Authors and Affiliations

  • Françoise Lust-Piquard
    • 1
  1. 1.CNRS-UA D 0757Université de Paris-Sud MathématiquesOrsay CedexFrance

Personalised recommendations