Israel Journal of Mathematics

, Volume 82, Issue 1–3, pp 363–371 | Cite as

Finitely generated groups of polynomial subgroup growth

  • Alexander Lubotzky
  • Avinoam Mann
  • Dan Segal
Article

Abstract

We determine the structure of finitely generated residually finite groups in which the number of subgroups of each finite indexn is bounded by a fixed power ofn.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [DDMS]
    J.D. Dixon, M.P.F. duSautoy, A. Mann and D. Segal,Analytic pro-p Groups, London Math. Soc. LNS 157, Cambridge University Press, 1991.Google Scholar
  2. [dS1]
    M.P.F. DuSautoy,Finitely generated groups, p-adic analytic groups and Poincaré series, Bull. Am. Math. Soc.23(1990), 121–126 (also Appendix C of [DDMS]).MathSciNetGoogle Scholar
  3. [dS2]
    M.P.F. duSautoy,Applications of p-adic methods to group theory, inp-Adic Methods and Their Application (A. Baker and R. Plyman, eds.), Oxford University Press, 1992.Google Scholar
  4. [GSS]
    F.J. Grunewald, D. Segal and G.C. Smith,Subgroups of finite index in nilpotent groups, Invent. Math.93 (1988), 185–223.MATHCrossRefMathSciNetGoogle Scholar
  5. [I]
    I. Ilani,Counting finite index subgroups and the P. Hall enumeration principle, Isr. J. Math.68 (1989), 18–26.MATHCrossRefMathSciNetGoogle Scholar
  6. [La]
    M. Lazard,Groupes analytiques p-adiques, Publ. Math. IHES26 (1965), 389–603.MATHMathSciNetGoogle Scholar
  7. [LM1]
    A. Lubotzky and A. Mann,Powerful p-group, I & II, J. Algebra105 (1987), 484–515.MATHCrossRefMathSciNetGoogle Scholar
  8. [LM2]
    A. Lubotzky and A. Mann,Residually finite groups of finite rank, Math. Proc. Camb. Phil. Soc.106 (1989), 385–388.MATHMathSciNetCrossRefGoogle Scholar
  9. [LM3]
    A. Lubotzky and A. Mann,On groups of polynomial subgroup growth, Invent. Math.104 (1991), 521–533.MATHCrossRefMathSciNetGoogle Scholar
  10. [Lu]
    A. Lubotzky,A group-theoretic characterization in linear groups, J. Algebra113 (1988), 207–214.MATHCrossRefMathSciNetGoogle Scholar
  11. [M1]
    A. Mann,Some applications of powerful p-groups, inGroups—St. Andrews 1989, Vol. 2, London Math. Soc. LNS 160, Cambridge University Press, 1991, pp. 370–385.Google Scholar
  12. [M2]
    A. Mann,Some properties of polynomial subgroup growth groups, Israel J. Math.82 (1993), 373–380.MATHMathSciNetGoogle Scholar
  13. [MS]
    A. Mann and D. Segal,Uniform finiteness conditions in residually finite groups, Proc. London Math. Soc. (3)61 (1990), 529–545.MATHCrossRefMathSciNetGoogle Scholar
  14. [MVW]
    C.R. Matthews, L.N. Vaserstein and B. Weisfeller,Congruence properties of Zariski-dense subgroups I, Proc. London Math. Soc.48 (1984), 514–532.MATHCrossRefMathSciNetGoogle Scholar
  15. [Ne]
    M. Newman,Asymptotic formulas related to free products of cyclic groups, Math. Comp.30 (1976), 838–846.MATHCrossRefMathSciNetGoogle Scholar
  16. [No]
    M. Nori,On subgroups of GL n(Fp), Invent. Math.88 (1987), 257–275.MATHCrossRefMathSciNetGoogle Scholar
  17. [R]
    D.J.S. Robinson,Finiteness Conditions and Generalized Soluble Groups II, Springer-Verlag, Berlin, 1972.Google Scholar
  18. [S1]
    D. Segal,Subgroups of finite index in soluble groups I, inGroups—St. Andrews 1985, London Math. Soc. LNS 121, Cambridge University Press, 1986, pp. 307–314.Google Scholar
  19. [S2]
    D. Segal,Residually finite groups, inGroups—Canberra 1989, Lecture Notes in Math.1456, Springer-Verlag, Berlin, 1990, pp. 85–95.CrossRefGoogle Scholar
  20. [Sh]
    A. Shalev,Growth functions, p-adic analytic groups, and groups of finite coclass, J. London Math. Soc., to appear.Google Scholar
  21. [We]
    B.A.F. Wehrfritz,Infinite Linear Groups, Springer-Verlag, Berlin, 1973.MATHGoogle Scholar
  22. [Wi]
    J.S. Wilson,Two-generator conditions for residually finite groups, Bull. London Math. Soc.104 (1991), 239–248.CrossRefGoogle Scholar

Copyright information

© Hebrew University 1993

Authors and Affiliations

  • Alexander Lubotzky
    • 1
  • Avinoam Mann
    • 1
  • Dan Segal
    • 2
  1. 1.Institute of MathematicsThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.All Souls CollegeUniversity of OxfordOxfordEngland

Personalised recommendations