Israel Journal of Mathematics

, Volume 82, Issue 1–3, pp 281–297

On extensions of the Baer-Suzuki Theorem

Article
  • 72 Downloads

Abstract

We find a necessary and sufficient condition for an element of prime order in a finite group to be in a normalp-subgroup. This generalizes the Baer-Suzuki Theorem. Our proof depends on a result about elements of prime order contained in a unique maximal subgroup containing a result of Wielandt. We discuss various consequences, linear and algebraic group versions of the result.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AL]
    J. Alperin and R. Lyons,Conjugacy classes of p-elements, J. Algebra19 (1971), 536–537.MATHCrossRefMathSciNetGoogle Scholar
  2. [Ar]
    O. D. Artemovich,Isolated elements of prime order in finite groups, Ukranian Math. J.40 (1988), 397–400.MATHMathSciNetGoogle Scholar
  3. [A1]
    M. Aschbacher,The 27-dimensional module for E 6,IV, J. Algebra131 (1990), 23–39.MATHCrossRefMathSciNetGoogle Scholar
  4. [A2]
    M. Aschbacher,Overgroups of Sylow subgroups in sporadic groups, Memoirs of the Amer. Math. Soc.60 (1986), No. 343.Google Scholar
  5. [B]
    A. Borel,Linear Algebraic Groups, 2nd Ed., Springer-Verlag, New York, 1991.MATHGoogle Scholar
  6. [F]
    W. Feit,The Representation Theory of Finite Groups, North-Holland Publishing Company, Amsterdam, 1982.MATHGoogle Scholar
  7. [G1]
    D. Gorenstein,Finite Groups, Harper & Row, New York, 1968.MATHGoogle Scholar
  8. [G2]
    D. Gorenstein,Finite Simple Groups — An Introduction to their Classification, Plenum Press, New York, 1982.MATHGoogle Scholar
  9. [Gr]
    F. Gross,Automorphisms which centralize a Sylow p-subgroup, J. Algebra77 (1982), 202–233.MATHCrossRefMathSciNetGoogle Scholar
  10. [H]
    J. Humphreys,Linear Algebric Groups, Springer-Verlag, New York, 1975.Google Scholar
  11. [S]
    G. Seitz,Generation of finite groups of Lie type, Trans. Amer. Math. Soc.271 (1982), 351–407.MATHCrossRefMathSciNetGoogle Scholar
  12. [St]
    R. Steinberg,Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc.,80, 1968.Google Scholar
  13. [Wa]
    H. N. Ward,On Ree’s series of simple groups, Trans. Amer. Math. Soc.121 (1966), 62–89.MATHCrossRefMathSciNetGoogle Scholar
  14. [W]
    H. Wielandt,Kriterien für Subnormalität in endlichen Gruppen, Math Z.138 (1974), 199–203.MATHCrossRefMathSciNetGoogle Scholar
  15. [X]
    Wen-Jun Xiao,Glauberman’s conjecture, Mazurov’s problem and Peng’s problem, Science in China Series A34 (1991), 1025–1031.MATHGoogle Scholar

Copyright information

© Hebrew University 1993

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Southern CalforniaLos AngelesUSA
  2. 2.Department of MathematicsUniversity of FloridaGainesvilleUSA

Personalised recommendations