Advertisement

Folia Geobotanica

, Volume 42, Issue 3, pp 225–247 | Cite as

A grid-based, satellite-image supported, multi-attributed vegetation mapping method (MÉTA)

  • Zsolt Molnár
  • Sándor Bartha
  • Tibor Seregélyes
  • Eszter Illyés
  • Zoltán Botta-Dukát
  • Gábor Tímár
  • Ferenc Horváth
  • András Révész
  • András Kun
  • János Bölöni
  • Marianna Biró
  • László Bodonczi
  • Áron Deák József
  • Péter Fogarasi
  • András Horváth
  • István Isépy
  • László Karas
  • Ferenc Kecskés
  • Csaba Molnár
  • Adrienne Ortmann-né Ajkai
  • Szilvia Rév
Article

Abstract

In this paper we present the main characteristics of a new, grid-based, landscape-ecology-oriented, satellite-image supported, field vegetation mapping method, called MÉTA (MÉTA stands for Magyarországi Élőhelyek Térképi Adatbázisa: GIS Database of the Hungarian Habitats). The goals of the MÉTA method based vegetation mapping program (MÉTA mapping) include the following: (1) to map the actual (semi-)natural vegetation of Hungary; (2) to evaluate Hungarian (semi-)natural vegetation heritage for conservation purposes; (3) to evaluate the present state of Hungarian landscapes from a vegetation point of view; (4) to collect vegetation and landscape ecological data for the prognosis of future changes of vegetation and the landscape. Spatial resolution, mapped attributes and mapping methods were developed to meet these goals.

The MÉTA method uses a hexagon grid with cells of 35 hectares. In the hexagons, habitat types are listed, then the area, naturalness-based habitat quality, spatial pattern in the hexagon, effect of the neighbourhood, connectedness, and threats are recorded for each habitat type. Other attributes are recorded in the hexagons: potential natural vegetation, area occupied by invasive plant species, area of old fields, land use of grasslands, and landscape health status (naturalness and regeneration potential of the landscape in general). One hundred hexagons form a quadrat — mainly for practical, organizational reasons, but also for collecting certain vegetation data at this spatial scale. For standardization of mapping, three different pre-printed data sheets and two different kinds of guides have been composed (Mapping Guide and Habitat Guide) and field trainings were organized. For standardization of estimation of naturalness-based habitat quality and regeneration potential field examples were prepared for each habitat type and each category of these attributes.

Keywords

GIS database Habitat quality Landscape ecology Large area survey Nature conservation Regeneration potential Standardization 

Nomenclature

Simon (2000) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson J.E. (1991): A conceptual framework for evaluating and quantifying naturalness.Conservation Biol. 5: 347–352.CrossRefGoogle Scholar
  2. Anderson J.E. (1992): Reply to Götmark.Conservation Biol. 6: 459–460.CrossRefGoogle Scholar
  3. Anonymous (1990):Handbook for Phase 1 habitat survey. A technique for environmental audit. Joint Nature Conservation Committee, London.Google Scholar
  4. Anonymous (1995):CORINE land-cover: methodology and nomenclature. European Environmental Agency, Copenhagen.Google Scholar
  5. Bagi I. (1991): Limitations and possibilities of the methodology of the Zürich-Montpellier phytosociology school in vegetation mapping.Phytocoenosis N.S. 3, Suppl. 2: 131–134.Google Scholar
  6. Bagi I. (1997):A vegetációtérképezés elméleti kérdései (Theoretical questions concerning vegetation mapping). PhD Thesis, MTA ÖBKI, Vácrátót.Google Scholar
  7. Barr C.J., Bunce R.G.H., Clarke R.T., Fuller R.M., Furse M.T., Gillespie M.K., Groom G.B., Hallam C.J., Hornung M. &Howard D.C. (1993):Countryside survey 1990: Main report. Department of the Environment, London.Google Scholar
  8. Bartha D. (2003a): Die Naturnähe der Wälder — Bewertung auf Bestandebene.Allg. Forst-Jagd-Zeitung 175: 8–13.Google Scholar
  9. Bartha S. (2003b):A természetvédelmi kezeléseket alapozó vegetációkutatásról (Vegetation science for nature conservation management). Nature Conservation Council, Budapest.Google Scholar
  10. Bartha D., Bölöni J., Ódor P., Standovár T., Szmorad F. &Tímár G. (2003): Mapping on the naturalness of the Hungarian forests.Erdész. Lapok 138: 73–75.Google Scholar
  11. Bartha D., Király G. &Molnár Z. (2002): A botanikus szakma nagy terve: Magyarország természetes növényzeti örökségének felmérése és összehasonlító értékelése (Mapping and comparative analysis of natural botanical heritage of Hungary). In:Salamon-Albert É. (ed.),Magyar botanikai kutatások az ezredfordulón. Tanulmányok Borhidi Attila 70. születésnapja tiszteletére (Recent botanical research in Hungary), PTE Növénytani Tanszék, Pécs, pp. 309–342.Google Scholar
  12. Bastian O. (1996): Biotope mapping and evaluation as a base of nature conservation and landscape planning.Ekológia (Bratislava) 15: 5–17.Google Scholar
  13. Bernátsky J. (1905): Anordnung der Formationen nach ihrer Beeinflussung seitens der menschlichen Kultur und der Weidetiere.Bot. Jahrb. Syst. 34: 1–8.Google Scholar
  14. Biró M., Papp O., Horváth F., Bagi I., Czúcz B. &Molnár ZS. (2006a): Élőhely-változások az idő folyamán (Habitat changes through time). In:Török K. &Fodor L. (eds.):A nemzeti biodiverzitás monitorozás eredményei I. Élőhelyek, mohák és gombák (Results of the Hungarian biodiversity monitoring system I. Habitats, mosses and fungi). KvVM TVH, Budapest, pp. 51–66.Google Scholar
  15. Biró M., Révész A., Horváth F. &Molnár Z. (2006b): Point based mapping of the actual vegetation of a large area in Hungary — description, usability and limitation of the method.Acta Bot. Hung. 48: 247–269.CrossRefGoogle Scholar
  16. Bock M., Xofis P., Mitchley J., Rossner G. &Wissen M. (2005): Object-oriented methods for habitat mapping at multiple scales — Case studies from Northern Germany and Wye Downs, UK.J. Nat. Conservation 13: 75–89.CrossRefGoogle Scholar
  17. Bohn U. &Neuhäusl R. (eds.) (2000–2003):Map of the natural vegetation of Europe. Federal Agency for Nature Conservation, Bonn.Google Scholar
  18. Borhidi A., Kevey B. &Varga Z. (1999): Checklist of the higher syntaxa of Hungary.Ann. Bot. (Rome) 57: 105–112.Google Scholar
  19. Bölöni J., Kun A. &Molnár Z. (2003):Élőhely-ismereti Útmutató (Habitat guide). MTA ÖBKI, Vácrátót.Google Scholar
  20. Burbidge A.A. (1991): Cost constraints for nature conservation. In:Margules C.R. &Austin M.P. (eds.),Nature conservation: Cost effective biological surveys and data analysis, CSIRO, Canberra, pp. 3–6.Google Scholar
  21. Büttner G., Biró M., Maucha G. & Petrik O. (2000): Land-cover mapping at scale 1: 50 000 in Hungary: Lessons learnt from the European CORINE programme. In:Buchroitner M.F. (ed.),A decade of trans-European remote sensing cooperation, Proceedings of the 20th EARSel Symposium Dresden, 14–16 June 2000, pp. 25–31.Google Scholar
  22. Büttner G., Csató É. &Maucha G. (1995): The CORINE Land Cover — Hungary project. In:Harnos Zs. (ed.),Proceedings of International Conference on Environment and Informatics, FÖMI, Budapest, pp. 54–61.Google Scholar
  23. Büttner G., Feranec J. &Jaffrain G. (eds.) (2002):Corine land-cover update 2000: Technical guidelines. European Environment Agency, Copenhagen.Google Scholar
  24. Cherrill A. &McClean C. (1995): An investigation of uncertainty in field habitat mapping and implication for detecting land-cover change.Landscape Ecol. 10: 5–21.CrossRefGoogle Scholar
  25. Cherrill A. &McClean C. (1999): Between-observer variation in the application of a standard method of habitat mapping by environmental consultants in the UK.J. Appl. Ecol. 36: 989–1008.CrossRefGoogle Scholar
  26. Chytrý M. (1998): Potential replacement vegetation: an approach to vegetation mapping of cultural landscapes.Appl. Veg. Sci. 1: 177–188.CrossRefGoogle Scholar
  27. Chytrý M., Kučera T. &Kočí M. (eds.) (2001):Katalog biotopů České republiky (Habitat catalogue of the Czech Republic). Agentura ochrany přírody a krajiny ČR, Praha.Google Scholar
  28. Cudlín P., Prokopová M., Francírková T., Burešová R., Smrž T. &Boucníková E. (2005): Biotope evaluation in the upper Stropnice watershed (South Bohemia) using modified Hessian method.Ekológia (Bratislava) 24 Suppl.: 52–68.Google Scholar
  29. Danszky I. &Rott F. (1964):Általános irányelvek. Erdő- és termőhelytípus-térképezés (General guidelines. Mapping forest types- and site conditions). Országos Erdészeti Főigazgatóság, Budapest.Google Scholar
  30. De Clercq E.M. &De Wulf R.R. (2004): Landscape indices for comparison of spatial forest patterns in different geographical regions. In:Branot S.A. (ed.),Proceedings of 12th International Conference on Geoinformatics — Geospatial information research: Bridging the Pacific and Atlantic, University of Gävle, Gävle, pp. 573–577.Google Scholar
  31. Dierschke H. (1984): Natürlichkeitsgrade von Pflanzengesellschaften unter besonderer Berücksichtigung der Vegetation Mitteleuropas.Phytocoenologia 12: 173–184.Google Scholar
  32. Dierschke H. (1991): Rasterkarten in verschiedenem Maßstab als Dokumente für Vegetationsveränderungen.Phytocoenosis 3: 37–45.Google Scholar
  33. Dierschke H. (1994):Pflanzensoziologie. Verlag Eugen Ulmer, Stuttgart.Google Scholar
  34. Ellenberg H. (1963):Vegetation Mitteleuropas mit den Alpen. Verlag Eugen Ulmer, Stuttgart.Google Scholar
  35. Faliński J.B. (1994a): Vegetation under the diverse anthropogenic impact as object of basic phytosociological map. Results of the international cartographical experiment organized in the Białowieża Forest: General introduction: work purpose and principles, study area, mapping participants and course.Phytocoenosis N.S. 6 (Suppl. Cartogr. Geobot. 4): 5–30.Google Scholar
  36. Faliński J.B. (1994b): Vegetation under the diverse anthgropogenic impact as object of basic phytosociological map. Results of the international cartographical experiment organized in the Białowieża Forest: Comparison of the maps and general experiences in the vegetation cartography.Phytocoenosis N.S. 6 (Suppl. Cartogr. Geobot. 4): 91–104.Google Scholar
  37. Fanelli G., Bianco M.P., Cazzagon P., D’Angeli D.D., De Corso S., De Sanctis M., Gioia P., Ramello A., Rinieri G., Serafini Sauli A., Tescarollo P., Testi A. &Pignatti S. (2005): Remote sensing in phytosociology: The map of vegetation of the Provincia of Rome.Ann. Bot. (Rome), N.S. 5: 171–181.Google Scholar
  38. Fekete G. (1980): Die Vegetationskartierung in Ungarn.Folia Geobot. Phytotax. 15: 193–194.Google Scholar
  39. Fekete G. (1998): Vegetációtérképezés: visszatekintés és hazai körkép (Vegetation mapping: retrospection and Hungarian aspects).Bot. Közlem. 85: 17–30.Google Scholar
  40. Fekete G., Molnár Z. &Horváth F. (eds.) (1997):A magyarországi élőhelyek leírása és határozókönyve. A Nemzeti Élőhely-osztályozási Rendszer (Guide and description of the Hungarian habitats. The National Habitat Classification System). Természettudományi Múzeum, Budapest.Google Scholar
  41. Fremstad E. (1997): Vegetasjontyper i Norge (Vegetation types of Norway).NINA Temahefte 12: 1–297.Google Scholar
  42. Fuller R.M., Wyatt B.K. &Barr C.J. (1998): Countryside survey from ground and space: different perspectives, complementary results.J. Environm. Managem. 54: 101–126.Google Scholar
  43. Götmark F. (1992): Naturalness as an evaluation criterion in nature conservation: A response to Anderson.Conservation Biol. 6: 455–458.CrossRefGoogle Scholar
  44. Grabherr G., Koch G., Kirchmeir H. &Reiter K. (1998):Hemerobie österreichischer Waldökosysteme. Universitätsverlag Wagner, Innsbruck.Google Scholar
  45. Greco S., Petriccione B. &Pignatti F. (1994): Vegetation mapping: a numerical comparative study of six maps of Białowieża Forest.Phytocoenosis N.S. 6 (Suppl. Cartogr. Geobot. 4): 105–113.Google Scholar
  46. Guth J. &Kučera T. (2005): Natura 2000 habitat mapping in the Czech Republic: methods and general results.Ekológia (Bratislava) 24 Suppl.: 39–51.Google Scholar
  47. Härdtle W. (1995): On the theoretical concept of the potential natural vegetation and proposal for an up-to-date modification.Folia Geobot. Phytotax. 30: 263–276.CrossRefGoogle Scholar
  48. Horváth F., Kovács-Láng E., Báldi A., Gergely E. &Demeter A. (2000):Európai jelentőségű természeti területeink felmérése és értékelése (Mapping and evaluation of our natural habitats of European importance). MTA Ökológiai és Botanikai Kutatóintézete, Vácrátót.Google Scholar
  49. Jakucs P. (1965): Complex vegetation mapping in the Hungarian medium mountains and its connection with practical forestry.Acta Agron. Hung. 13: 303–327.Google Scholar
  50. Jalas J. (1955): Hemerobe and hemerochore Pflanzenarten — Ein terminologischer Reformversuch.Acta Soc. Fauna Fl. Fenn. 72(11): 1–15.Google Scholar
  51. Janssen J.A.M. (2004): The use of sequential vegetation maps for monitoring in coastal areas.Comm. Ecol. 5: 31–43.CrossRefGoogle Scholar
  52. Kaligarić M., Seliškar A. &Veen P. (2003):Grasslands of Slovenia, status and conservation of semi-natural grasslands. Society for Natural History in Slovenia, Ljubjana.Google Scholar
  53. Keramitsoglou I., Kontoes C., Sifakis N., Mitchley J. &Xofis P. (2005): Kernel based re-classification of Earth observation data for fine scale habitat mapping.J. Nat. Conservation 13: 91–99.CrossRefGoogle Scholar
  54. Kovács-Láng E., Fekete G., Horváth F., Molnár Z., Török K., Tardy J. &Demeter A. (2000): Development and implementation of a National Biodiversity Monitoring Programme in Hungary.Schriftenreihe Landschaftspflege Naturschutz 62: 124–136.Google Scholar
  55. Kovács-Láng E., Horváth F., Gulyás G. &Németh L. (1997):CORINE Biotóp adatbázis H-1.1.(CORINE Biotopes database H-1.1.). MTA ÖBKI & MTM Állattár, Vácrátót & Budapest.Google Scholar
  56. Kowarik I. (1987): Kritische Anmerkungen zum theoretischen Konzept der potentiellen natürlichen Vegetation mit Anregungen zu einer zeitgemäßen Modifikation.Tuexenia 7: 53–67.Google Scholar
  57. Kun A. &Molnár Z. (eds.) (1999):Élőhely-térképezés (Habitat mapping). Scientia Kiadó, Budapest.Google Scholar
  58. Küchler A.W. (1967):Vegetation mapping. Ronald Press, New York.Google Scholar
  59. Küchler A.W. &Zonneveld I.S. (1988): Vegetation Mapping. Kluwer, Dordrecht.Google Scholar
  60. Loidi J. (1999): Preserving biodiversity in the European Union: the Habitats Directive and its application in Spain.Pl. Biosystems 133: 99–106.Google Scholar
  61. Mägi M. &Lutsar L. (2001):Inventory of seminatural grasslands in Estonia. Estonian Fund for Nature, Tallinn.Google Scholar
  62. Mack R.N., Simberloff D., Lonsdale W.M., Evans H., Clout M. &Bazzaz F.A. (2000): Biotic invasions: causes, epidemology, global consequences, and control.Ecol. Appl. 10: 689–710.CrossRefGoogle Scholar
  63. Millington A.C. &Alexander R.W. (2000): Vegetation mapping in the last three decades of the twentieth century. In:Alexander R.W. &Millington A.C. (eds.),Vegetation mapping: from patch to planet, John Wiley & Sons, New York, pp. 321–331.Google Scholar
  64. Molnár Z. (ed.) (2003):MÉTA módszertani és adatlapkitöltési útmutató (Guide on the methods of MÉTA and on the completion of the MÉTA datasheets). MTA ÖBKI, Vácrátót.Google Scholar
  65. Molnár Z., Büttner G., Taracsák G., Révész A. &Horváth F. (2001a):CORINE Élőhely-térképezés (CÉT) (CORINE Habitat-mapping), 1: 50 000. GIS database. MTA ÖBKI & FÖMI, Vácrátót & Budapest.Google Scholar
  66. Molnár Z., Horváth F. &Révész A. (2001b):IBOA-atlasz 1.0: Előtanulmány Magyarország természetes növényzeti örökségének élőhelyi adatbázisához és térképéhez (IBOA-atlas 1.0: Preliminary study for the habitat database and habitat map of the natural botanical heritage of Hungary). MTA ÖBKI, Vácrátót.Google Scholar
  67. Molnár Z., Horváth F., Kertész M. &Kun A. (1998): A vegetáció térk’epezésének objektivitása (The objectivity of vegetation mapping).Kitaibelia 3: 307–308.Google Scholar
  68. Moravec J. (1995): Progress of the work on the Grant Project “European Vegetation Survey — Czech Republic” and further perspectives.Ann. Bot. (Rome) 53: 135–139.Google Scholar
  69. Mucina L., Grabherr G. &Ellmauer T. (1993):Pflanzengesellschaften Österreich 1–3. Gustav Fischer Verlag, Jena.Google Scholar
  70. Németh F. &Seregélyes T. (1989):Természetvédelmi információs rendszer: Adatlap kitöltési útmutató (Information system of nature conservation: Guide for filling-in the data sheets). Környezetgazdálkodási Intézet, Budapest.Google Scholar
  71. Neuhäuslová Z. &Moravec J. (eds.) (1997):Mapa potenciální přirozené vegetace České republiky. Map of potential natural vegetation of the Czech Republic 1: 500.000. Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice.Google Scholar
  72. Niklfeld H. (1973): Natürliche Vegetation. In:Niklfeld H. (ed.),Atlas der Donauländer, Österreichische Ost- und Südosteuropa Institute, Wien.Google Scholar
  73. Nowotny G. (2003): Bericht über den Workshop “Alpenbiotopkartierung und Natura 2000”.NaturLand Salzburg 2003: 62–64.Google Scholar
  74. Ozenda P. &Borel J.L. (2000): An ecological map of Europe: why and how?Compt. Rend. Acad. Sci. Paris, Life Sci. 323: 983–994.Google Scholar
  75. Pócs T., Domokos É., Pócs-Gelencsér I. &Vida G. (1958):Vegetationsstudien im Őrség. Akadémiai Kiadó, Budapest.Google Scholar
  76. Rivas-Martínez S., Asensi A., Costa M., Fernández-González F., Llorens L., Masalles R., Molero Mesa J., Penas A. &Pérez de Paz P.L. (1994): El proyecto de cartografía e inventariación de los tipos de hábitats de la Directiva 92/42/CEE en España.Colloq. Phytosoc. 22: 611–661.Google Scholar
  77. Rodwell J.S. (ed.) (1991–2000):British plant communities 1–6. Cambridge University Press, Cambridge.Google Scholar
  78. Rodwell J.S., Schaminée J.H.J., Mucina L., Pignatti S., Dring J. &Moss D. (2002):The diversity of European vegetation. An overview of phytosociological alliances and their relationships to EUNIS habitats. National Reference Centre for Agriculture, Nature and Fisheries, Wageningen.Google Scholar
  79. Ružičková H., Halada L., Jedlička L. &Kalivodová E. (1996):Biotopy Slovenska (Habitats of Slovakia). Ústav krajinnej ekológie SAV, Bratislava.Google Scholar
  80. Sanders M.E., Dirkse G.M. &Slim P.A. (2004): Objectifying thematic, spatial and temporal aspects of vegetation mapping for monitoring.Commun. Ecol. 5: 81–91.CrossRefGoogle Scholar
  81. Schaminée J.H.J. (1995–1999):De vegetatie van Nederland 1–5 (The vegetation of the Netherlands 1–5). Opulus Press, Uppsala/Leiden.Google Scholar
  82. Schmidtlein S. (2000):Aufnahme von Vegetationsmustern auf Landschaftsebene. Nationalparkverwaltung Berchtesgraden, Berchtesgraden.Google Scholar
  83. Seregélyes T. &Csomós Á. (1995): Hogyan készítsünk vegetációtérképeket? (How to prepare vegetation maps?).Tilia 1: 158–169.Google Scholar
  84. Simon T. (2000):A magyarországi edényes flóra határozója: Harasztok — virágos növények (Identification guide to the Hungarian flora). Nemzeti Tankönyvkiadó, Budapest.Google Scholar
  85. Smart S.M., Clarke R.T., van der Poll H.M., Robertson E.J., Shield E.R., Bunce R.G. &Maskell L.C. (2003): National-scale vegetation change across Britain: an analysis of sample-based surveillance data from the Coutryside Surveys of 1990 and 1998.J. Environm. Managem. 67: 239–254.Google Scholar
  86. Soó R. &Zólyomi B. (eds.) (1951):Növényföldrajzi térképezési tanfolyam jegyzete (A transcript of the phytogeographical mapping course). MTA Botanikai Kutatóintézete, Vácrátót.Google Scholar
  87. Soó R. (1964–1980):Synopsis systematico-geobotanica florae vegetationesque Hungariae 1–7. Akadémiai Kiadó, Budapest.Google Scholar
  88. Stanová V. &Valachovič M. (eds.) (2002):Katalóg biotopov Slovenska (Catalogue of habitats in Slovakia). DAPHNE — Inštitút aplikovanej ekológie, Bratislava.Google Scholar
  89. Stevens J.P., Blackstock T.H., Howe E.A. &Stevens D.P. (2004): Repeatibility of Phase I habitat survey.J. Environm. Managem. 73: 53–59.Google Scholar
  90. Sukopp H. (1969): Der Einfluß des Menschen auf die Vegetation.Vegetatio 17: 360–371.CrossRefGoogle Scholar
  91. Szmorad F. (1997): A vegetáció-rekonstrukció elméleti kérdéseiről (On the theoretical questions of vegetation reconstruction). In:Uherkovich Á. (ed.),IVth Hungarian Congress on Ecology, Abstracts of lectures and posters, JPTE, Pécs, p. 195.Google Scholar
  92. Török K., Botta-Dukát Z., Dancza I., Németh I., Kiss J., Mihály B. &Magyar D. (2003): Invasion gateways and corridors in the Carpathian Basin: Biological invasions in Hungary.Biol. Invasions 5: 349–356.CrossRefGoogle Scholar
  93. Tüxen R. (1956): Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung.Angew. Pflanzensoziol. (Stolzenau) 13: 5–42.Google Scholar
  94. Virágh K. &Fekete G. (1984): Degradation stages in a xeroseries: composition, similarity, grouping, coordination.Acta Bot. Hung. 30: 427–459.Google Scholar
  95. Waterton C. (1997):Vegetation science in action: the EVS as a standardising culture. Lancaster University, Lancaster.Google Scholar
  96. White D., Kimerling A.J. &Overton W.S. (1992): Cartographic and geometric components of a global sampling design for environmental monitoring.Cartogr. Geogr. Inform. Syst. 19: 5–22.Google Scholar
  97. Wyatt B.K. (2000): Vegetation mapping from ground, air and space — competitive or complementary techniques? In:Alexander R.W. &Millington A.C. (eds.),Vegetation mapping: from patch to planet, John Wiley & Sons, New York, pp. 3–15.Google Scholar
  98. Zólyomi B. (1989): Magyarország természetes növénytakarója (Map of the natural vegetation of Hungary). In:Pécsi M. (ed.),Nemzeti Atlasz (National atlas), Kartográfia Vállalat, Budapest, p. 89.Google Scholar
  99. Zólyomi B., Jakucs P., Baráth Z. &Horánszky A. (1954): A bükkhegységi növényföldrajzi térképezés erdőgazdasági vonatkozású eredményei (The results of the phytogeographical mapping in the Bükk mountains in connection with forestry).Az Erdő 3: 78–82, 97–105, 160–171.Google Scholar

Copyright information

© Institute of Botany 2007

Authors and Affiliations

  • Zsolt Molnár
    • 1
  • Sándor Bartha
    • 1
  • Tibor Seregélyes
    • 2
  • Eszter Illyés
    • 1
  • Zoltán Botta-Dukát
    • 1
  • Gábor Tímár
    • 3
  • Ferenc Horváth
    • 1
  • András Révész
    • 1
  • András Kun
    • 1
  • János Bölöni
    • 1
  • Marianna Biró
    • 4
  • László Bodonczi
    • 5
  • Áron Deák József
    • 6
  • Péter Fogarasi
    • 7
  • András Horváth
    • 1
  • István Isépy
    • 8
  • László Karas
    • 9
  • Ferenc Kecskés
    • 10
  • Csaba Molnár
    • 11
  • Adrienne Ortmann-né Ajkai
    • 12
  • Szilvia Rév
    • 13
  1. 1.Institute of Ecology and Botany of the Hungarian Academy of SciencesVácrátótHungary
  2. 2.VelenceHungary
  3. 3.State Forest ServiceVácHungary
  4. 4.VácrátótHungary
  5. 5.ÖriszentpéterHungary
  6. 6.Department of Climatology and Landscape EcologyUniversity of SzegedSzegedHungary
  7. 7.TataHungary
  8. 8.Botanical GardensEötvös Loránd UniversityBudapestHungary
  9. 9.Team-Work Consulting and TrainingSzentendreHungary
  10. 10.English Bilingual GrammarschoolBudai Secondary School Táncsics MihályBudapestHungary
  11. 11.GyöngyöstarjánHungary
  12. 12.PécsHungary
  13. 13.E-misszió Environmental AssociationNyíregyházaHungary

Personalised recommendations