Advertisement

Russian Physics Journal

, Volume 40, Issue 2, pp 117–123 | Cite as

Integration of the einstein-dirac equations for steckel spaces of type (3.1)

  • V. G. Bagrov
  • V. V. Obukhov
  • A. G. Sakhapov
Elementary Particle Physics And Field Theory
  • 12 Downloads

Abstract

We consider the problem of classification of Steckel spaces satisfying the system of self-consistent Einstein-Dirac equations with a cosmological term for the case when the spaces allow for isotropic complete sets of integrals of motion of type (3.1). The exact solution obtained contains four arbitrary functions of one variable.

Keywords

Dirac Equation Complete Separation Riemann Space Spinor Field Cosmological Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Patrick, J. Math. Phys.,32, 231 (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    W. Patrick, Phys. Lett. A,147, 435 (1990).CrossRefGoogle Scholar
  3. 3.
    V. N. Shapovalov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 57 (1975).Google Scholar
  4. 4.
    B. Carter and R. G. McLenaghan, Phys. Rev. D.,19, 1093 (1979).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    N. Kamran and R. G. McLenaghan, J. Math. Phys.,25, 1019 (1984).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    E. G. Kalnins, W. J. Miller, and G. C. Williams, J. Math. Phys.,27, 1893 (1986).zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    G. F. Torres del Castillo, J. Math. Phys.,27, 2756 (1986).zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    N. A. Chernikov and N. S. Shavokhina, Acta Phys. Pol. B,20, 177 (1990).MathSciNetGoogle Scholar
  9. 9.
    S. D. Odintsov, Forsch. Phys.,39, 621 (1991).CrossRefMathSciNetGoogle Scholar
  10. 10.
    V. G. Bagrov, A. V. Shapovalov, and A. A. Yevseyevich, Class. Quant. Grav.,7, 517 (1990).zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    V. G. Bagrov and V. V. Obukhov, J. Math. Phys.,33, 2279 (1992).zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    V. G. Bagrov and V. V. Obukhov, Int. J. Mod. Phys. D,3, 739 (1993).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    V. G. Bagrov, V. V. Obukhov, and A. V. Shapovalov, J. Phys.,26, 93 (1986).Google Scholar
  14. 14.
    V. G. Bagrov and V. V. Obukhov, Teor. Math. Phys. (Russia),97, 250 (1992).MathSciNetGoogle Scholar
  15. 15.
    V. N. Shapovalov, Sib. Math. J. (Russia),20, 1117 (1979).zbMATHMathSciNetGoogle Scholar
  16. 16.
    V. G. Bagrov, V. V. Obukhov, and K. E. Osetrin, Gen. Rel. Grav.,20, 1141 (1988).zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    V. G. Bagrov and V. V. Obukhov, Ann. der Phys.,40, Nos. 4–5, 181 (1983).zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    V. G. B. Carter, Phys. Lett.,A26, 399 (1968).ADSGoogle Scholar
  19. 19.
    E. T. Newman and R. Penrose, J. Math. Phys.,3, 566 (1962).CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    R. Penrose and W. Rindler, Spinors and Space-Time. Vol. I. Two-Spinor Calculus and Relativistic Fields, Cambridge University Press (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. G. Bagrov
  • V. V. Obukhov
  • A. G. Sakhapov

There are no affiliations available

Personalised recommendations