Brittonia

, Volume 53, Issue 1, pp 108–115 | Cite as

A phylogeny inferred from large ribosomal subunit (26S) rDNA sequences suggests that Cuscuta is a derived member of Convolvulaceae

  • Ray Neyland
Articles

Abstract

Cuscuta is a parasitic angiosperm that has been considered alternatively either as a genus within Convolvulaceae or as a monogeneric family in its own right. Although typically placed in the Solanales,Cuscuta has also been positioned within the Polemoniales. Extreme reduction of morphological and anatomical characters, as well as chloroplast genome reductions and rearrangements, has made the phylogenetic placement ofCuscuta uncertain. Analysis of 26S rDNA sequences suggests thatCuscuta is a derived member of Convolvulaceae. Molecular results are discussed in relation to the morphological and anatomical characters of autotrophic members of Convolvulaceae.

Key words

Asteridae Convolvulaceae Cuscuta Cuscutaceae Solanales 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Britton N. L. &H. C. Brown. 1913. An illustrated flora of the northern United States and Canada, and the British possessions. Ed. 2. Scribner, New York.Google Scholar
  2. Bömmer, D., G. Haberhausen &K. Zetsche. 1993. A large deletion in the plastid DNA of the holoparasitic flowering plantCuscuta reflexa concerning two ribosomal proteins, (rpl2, rpl23), one transfer RNA (trnI) and an ORF 2280 homologue. Curr. Genet. 24: 171–176.PubMedCrossRefGoogle Scholar
  3. Choisy, J. D.. 1841. De Convolvulaceis Dissertatio, etc. Mém. Soc. Phys. et d’Hist. Nat. Genève 9: 261–288.Google Scholar
  4. Colewell, A. E. L.. 1994. Genome evolution in a nonphotosynthetic plant. Ph.D. dissertation. Washington University, St. Louis.Google Scholar
  5. Cronquist, A.. 1968., The evolution and classification of flowering plants. Houghton Mifflin, Boston.Google Scholar
  6. —. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York.Google Scholar
  7. —. 1988. The evolution and classification of flowering plants. Ed. 2. The New York Botanical Garden, Bronx.Google Scholar
  8. Cullings, K. W. &T. D. Bruns. 1992. Phylogenetic origin of the Monotropoideae inferred from partial 28S ribosomal RNA gene sequences. Canad. J. Bot. 70: 1703–1708.Google Scholar
  9. Dahlgren, A. M. T.. 1980. A revised system of classification of the angiosperms. Bot. J. Linn. Soc. 80: 91–124.Google Scholar
  10. Dahlgren, G. D.. 1989. The last Dahlgrenogram. System of classification of the dicotyledons. Pages 249–260.In: K. Tan, editor. The Davis and Hedge Festschrift. University Press. Edinburgh.Google Scholar
  11. dePamphilis, C. W.. 1995. Genes and genomes. Pages 177–205.In: M. C. Press & J. D. Graves, editors. Parasitic plants. Chapman & Hall, London.Google Scholar
  12. Des Moulins, C. 1853. Etudes organiques sur les Cuscutes. Compt-Rend. de la XIX session (Toulouse) du Congrès Scientifique de France 2: 1–80.Google Scholar
  13. Dodge, J. D. &G. B. Lawes. 1974. Plastid ultrastructure in some parasitic and semi-parasitic plants. Cytobiologie 9: 1–9.Google Scholar
  14. Downie, S. R. &J. D. Palmer. 1992. Restriction site mapping of the chloroplast inverted repeat: a molecular phylogeny of the Asteridae. Ann. Missouri Bot. Gard. 79: 333–345.CrossRefGoogle Scholar
  15. Doyle, J. J. &J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15.Google Scholar
  16. Engelmann, G.. 1887. The botanical works of the late George Engelmann. Wilson, Cambridge.Google Scholar
  17. Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27: 401–410.CrossRefGoogle Scholar
  18. — 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  19. Freyer, R., K. Neckerman, R. M. Maier &H. Kössel. 1995. Structural and functional analysis of plastid genomes from parasitic plants: loss of an intron within the genusCuscuta. Curr. Genet. 27: 580–586.PubMedCrossRefGoogle Scholar
  20. Gray, A. 1908. New manual of botany. Ed. 7. American Book Company, New York.Google Scholar
  21. Haberhausen, G. K. Valentin &K. Zetsche. 1992. Organization and sequence of photosynthetic genes from the plastid genome of the holoparasitic flowering plantCuscuta reflexa Molec. Gen. Genet. 232: 154–161.PubMedCrossRefGoogle Scholar
  22. — &K. Zetsche. 1994. Functional loss of allndh genes in an otherwise relatively unaltered plastid genome of the holoparasitic flowering plantCuscuta reflexa. Pl. Molec. Biol. 24: 217–222.CrossRefGoogle Scholar
  23. Hibbett, D. S. &R. Vilgalys. 1993. Phylogenetic relationships ofLentinus (Basidiomycotina) inferred from molecular and morphological characters. Syst. Bot. 18: 409–433.CrossRefGoogle Scholar
  24. Hooker, J. D., 1885. The flora of British India. L. Reeve. London.Google Scholar
  25. Hutchinson, J. 1959. The families of flowering plants. Vol. I. Dicotyledons. Clarendon Press, Oxford.Google Scholar
  26. Johri, M. &B. Tiagi. 1952. Floral morphology and seed formation inCuscuta reflexa Roxb. Phytomorphology 2: 162–180.Google Scholar
  27. Kiss, T. M. Kiss &F. Solmosy. 1989. Nucleotide sequence of a 25S rRNA gene from tomato. Nucl. Acids Res. 17: 796.PubMedCrossRefGoogle Scholar
  28. Kuijt, J.. 1969. The biology of parasitic flowering plants. University of California Press, Berkeley.Google Scholar
  29. Kuzoff, R. K. J. A. Sweere, D. E. Soltis, P. S. Soltis &E. A. Zimmer. 1998. The phylogenetic potential of entire 26S rDNA sequences in plants. Molec. Biol. Evol. 15: 251–263.PubMedGoogle Scholar
  30. Lawrence, G. H. M.. 1951. Taxonomy of vascular plants. Maemillan, New York.Google Scholar
  31. Machado, M. A. &K. Zetsche. 1990. A structural, functional and molecular analysis of plastids of the holoparasitesCuscuta reflexa andCuscuta europea. Planta 181: 91–96.CrossRefGoogle Scholar
  32. Maddison, W. P. &D. R. Maddison. 1992. Mac-Clade: analysis of phylogeny and character evolution. Version 3.0. Sinauer Associates. Sunderland, Massachusetts.Google Scholar
  33. Metcalfe, C. R. &L. Chalk. 1950. Anatomy of the Dicotyledons. Vol. II. Clarendon Press, Oxford.Google Scholar
  34. Michaels, H. J. K. M. Scott, R. G. Olmstead, T., Szaro, R. K. Jansen &J. D. Palmer. 1993. Interfamilial relationships of the Asteraceae: insights fromrbcL sequence variation. Ann. Missouri Bot. Gard. 80: 742–751.CrossRefGoogle Scholar
  35. Molau, U.. 1995. Reproductive ecology and biology. Pages. 141–176.In: M. C. Press & J. D. Graves, editors. Parasitic plants. Chapman & Hall, London.Google Scholar
  36. Mullis, K. B. &F. A. Faloona. 1987. Specific synthesis of DNA in vitro via polymerase chain reaction. Meth. Enzymol. 155: 335–350.PubMedGoogle Scholar
  37. Nickrent, D. L. &C. R. Franchina. 1990. Phylogenetic relationships of the Santalales and relatives. J. Molec. Evol. 31: 294–301.PubMedCrossRefGoogle Scholar
  38. —. 1994. High rates of nucleotide substitution in nuclear small-subunit (18S) rDNA from holoparasitic flowering plants. J. Molec. Evol. 39: 62–70.PubMedCrossRefGoogle Scholar
  39. —. 1996 Molecular studies of parasitic plants using ribosomal RNA. Pages 28–52.In: M. T. Moreno et al. editors. Advances in plant research, Junta de Andalucia. Dirección General de Investigación Agraria, Cordoba, Spain.Google Scholar
  40. —,A. E. Colwell, A. D. Wolfe, N. D. Young, K. E. Steiner &C. dePamphilis. 1998. Molecular phylogenetic and evolutionary studies of parasitic plants. Pages 211–241.In: P. Soltis, D. Soltis & J. Doyle, editors. Molecular systematics of plants. Kluwer, Boston.Google Scholar
  41. Olmstead, R. G., R. K. Jansen, H. J. Michaels, S. R. Downie &J. D. Palmer. 1990. Chloroplast DNA and phylogenetic studies in the Asteridae. Pages 119–134.In: S. Kawano, editor. Biological approaches and evolutionary trends in plants. Academic Press, London.Google Scholar
  42. —,B. Bremmer, K. M. Scott &J. D. Palmer. 1992a. A parsimony analysis of the Asteridae sensu lato based onrbcL sequences. Ann. Missouri Bot. Gard. 80: 700–722.CrossRefGoogle Scholar
  43. —,H. J. Michaels, K. M. Scott &J. D. Palmer. 1992b. Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences ofrbcL. Ann. Missouri Bot. Gard. 79: 249–265.CrossRefGoogle Scholar
  44. Pérez-Amador, M. C., L. Arreola, J. Márquez-Guzmán &A. García-Argáez. 1996. Taxonomic markers of the family Convolvulaceae in four species ofCuscuta. Int. J. Exp. Bot. 58: 115–118.Google Scholar
  45. Peter, A. 1897. Convolvulaceae. Pages 1–40.In: A. Engler & K. Prantl, editors Die natürlichen Pflanzenfamilien, IV, Teil 3. Abt. A. W. Engelmann.Google Scholar
  46. Pfeiffer, M. 1846. Recherches sur les Cuscutacées. Ann. Sci. Nat. Ser. 3, 5: 83–89.Google Scholar
  47. Press, M. C., J. D. Graves &G. R. Stewart. 1990. Physiology of the interaction of angiosperm parasites and their higher plant hosts. Pl. Cell Environm. 13: 91–104.CrossRefGoogle Scholar
  48. ——. 1995. Parasitic plants. Chapman & Hall, London.Google Scholar
  49. Rendle, A. B.. 1959. The classification of flowering plants. University Press, Cambridge.Google Scholar
  50. Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Huiguchi, G. T. Horn, K. B. Mullis &H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239: 487–491.PubMedCrossRefGoogle Scholar
  51. Sanderson, M. J.. 1989. Confidence limits on phylogenies. Cladistics 5: 113–129.CrossRefGoogle Scholar
  52. Searcy, D. G. 1970. Measurements by DNA hybridization in vitro of the genetic basis of parasitic reduction. Evolution 24: 207–219.CrossRefGoogle Scholar
  53. — &A. J. MacInnis. 1970. Measurements by DNA renaturation of the genetic basic of parasitic reduction. Evolution 24: 796–806.CrossRefGoogle Scholar
  54. Small, J. K. 1913. Flora of the southeastern United States. Ed. 2. Published by the author. New York.Google Scholar
  55. Smith, B. F. 1934. A taxonomic and morphological study of the genusCuscuta, dodders, in North Carolina. J Elisha Mitchell Sci. Soc. 50: 283–302.Google Scholar
  56. Soltis, D. F., P. S. Soltis, D. L. Nickrent, L. A. Johnson, W. J. Hahn, S. B. Hoot, J. A. Sweere, R. K. Kuzoff, K. A. Kron, M. W. Chase, S. M. Swenson, E. A. Zimmer, S. Chaw, L. J. Gillespie, W. J. Kress &K. J. Sytsma. 1997. Angiosperm phylogeny interred from 18S ribosomal DNA sequences. Ann Missouri Bot. Gard. 84: 1–19.CrossRefGoogle Scholar
  57. Stewart, G. R. &M. C. Press. 1990. The physiology and biochemistry of parasitic angiosperms. Annual Rev. Pl Physiol. Molec. Biol. 41: 127–151.CrossRefGoogle Scholar
  58. Sugiura, M., Y. Iida, K. Oono &F. Takaiwa. 1985. The complete nucleotide sequence of rice 25S rRNA gene. Gene 37: 255–259.PubMedCrossRefGoogle Scholar
  59. Swofford, D. L.. 1993. Phylogenetic analysis using parsimony. Illinois Natural History Survey, Champaign.Google Scholar
  60. — &D. P. Beagle. 1993. Phylogenetic analysis using parsimony. Version 3.1.1. Illinois Natural History Survey. Champaign.Google Scholar
  61. Takhtajan, A. L.. 1980. Outline of the classification of flowering plants (Magnoliophyta). Bot. Rev. (Lancaster) 46: 225–359.Google Scholar
  62. — 1993. Diversity and classification of flowering plants. Columbia University Press, New York.Google Scholar
  63. Thorne, R. F. 1983 Proposed new realignments in the angiosperms. Nordic. J. Bot. 3: 85–117.Google Scholar
  64. Van Oostroom, S. J., (assisted by R. D. Hoogland). 1953. Convolvulaceae. Flora Males. Ser. 1, 4: 388–512.Google Scholar
  65. Watson, L. & M. J. Dallwitz. 1992. The families of flowering plants: descriptions, illustrations, identification and information retrieval. URL: (http:// www.keil.ukans.edu/delta>.Google Scholar
  66. Wettstein, R. 1935. Handbuch der systematischen Botanik. Franz Deuticke, Leipzig.Google Scholar
  67. Yuncker, T. G.. 1921. Revision of the North American species ofCuscuta. Univ. Illinois Biol. Monogr. 6: 1–142.Google Scholar
  68. — 1932 The genusCuscuta. Mem. Torrey Bot. Club 18: 113–331.Google Scholar

Copyright information

© The New York Botanical Garden Press 2001

Authors and Affiliations

  • Ray Neyland
    • 1
  1. 1.Department of Biology and Environmental ScienceMcNeese State UniversityLake CharlesU.S.A.

Personalised recommendations