Advertisement

Estuaries

, Volume 25, Issue 4, pp 886–900 | Cite as

Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems

  • Donald F. BoeschEmail author
Article

Abstract

Nutrient over-enrichment has resulted in major changes in the coastal ecosystems of developed nations in Europe, North America, Asia, and Oceania, mostly taking place over the narrow period of 1960 to 1980. Many estuaries and embayments are affected, but the effects of this eutrophication have been also felt over large areas of semi-enclosed seas including the Baltic, North, Adriatic, and Black Seas in Europe, the Gulf of Mexico, and the Seto Inland Sea in Japan. Primary production increased, water clarity decreased, food chains were altered, oxygen depletion of bottom waters developed or expanded, seagrass beds were lost, and harmful algal blooms occurred with increased frequency. This period of dramatic alteration of coastal ecosystems, mostly for the worse from a human perspective, coincided with the more than doubling of additions of fixed nitrogen to the biosphere from human activities, driven particularly by a more than 5-fold increase in use of manufactured fertilizers during that 20-year period. Nutrient over-enrichment often interacted synergistically with other human activities, such as overfishing, habitat destruction, and other forms of chemical pollution, in contributing to the widespread degradation of coastal ecosystems that was observed during the last half of the 20th century. Science was effective in documenting the consequences and root causes of nutrient over-enrichment and has provided the basis for extensive efforts to abate it, ranging from national statutes and regulations to multijurisdictional compacts under the Helsinki Commission for the Baltic Sea, the Oslo-Paris Commission for the North Sea, and the Chesapeake Bay Program, for example. These efforts have usually been based on a relatively arbitrary goal of reducing nutrient inputs by a certain percentage, without much understanding of how and when this would affect the coastal ecosystem. While some of these efforts have succeeded in achieving reductions of inputs of phosphorus and nitrogen, principally through treatment of point-source discharges, relatively little progress has been made in reducing diffuse sources of nitrogen. Second-generation management goals tend to be based on desired outcomes for the coastal ecosystem and determination of the load reductions needed to attain them, for example the Total Daily Maximum Load approach in the U.S. and the Water Franmework Directive in the European Union. Science and technology are now challenged not just to diagnose the degree of eutrophication and its causes, but to contribute to its prognosis and treatment by determining the relative susceptibility of coastal ecosystems to nutrient over-enrichment, defining desirable and achievable outcomes for rehabilitation efforts, reducing nutrient sources, enhancing nutrient sinks, strategically targeting these efforts within watersheds, and predicting and observing responses in an adaptive management framework.

Keywords

Coastal Ecosystem Benthic Foraminifera Diffuse Source Oyster Reef Mississippi River Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alexander, R. B., R. A. Smith, andG. E. Schwartz. 2000. Effect of stream channel size on the delivery of nitrogen to the Gultf of Mexico.Nature 403:758–761.CrossRefGoogle Scholar
  2. Andersson, L. andL. Rydberg. 1988. Trends in nutrient and oxygen conditions within the Kattegat: Effects of local nutrient supply.Estuarine, Coastal and Shelf Science 26:559–579.CrossRefGoogle Scholar
  3. Behrendt, H. 1999. Estimation of the nutrient inputs into medium and large river basins: A case study for German rivers.LOICZ Newsletter 12:1–4.Google Scholar
  4. Boesch, D. F. andR. B. Brinsfield. 2000. Coastal eutrophication and agriculture: Contributions and solutions, p. 93–115.In: E. Balázs, E. Galante, J. M. Lynch, J. S. Schepers, J. P. Toutant, E. Werner, and P. A. Th. J. Werry (eds.), Biological Resource Management: Connecting Science and Policy. Springer, Berlin, Germany.Google Scholar
  5. Boesch, D. F., R. Brinsfield, andR. Magnien. 2001a. Chesapeake Bay eutrophication: Scientific understanding, ecosystem restoration, and challenges for agriculture.Journal of Environmental Quality 30:303–320.Google Scholar
  6. Boesch, D., E. Burreson, W. Dennison, E. Houde, M. Kemp, V. Kennedy, R. Newell, K. Paynter, R. Orth, andR. Ulanowicz. 2001b. Factors in the decline of coastal ecosystems.Science 293:1589–1590.CrossRefGoogle Scholar
  7. Booth, D. B. andC. R. Jackson. 1997. Urbanization of aquatic systems: Degradation thresholds, stormwater detention, and the limits of mitigation.Journal of American Water Resources Association 33:1077–1090.CrossRefGoogle Scholar
  8. Bricker, S. B., C. G. Clement, D. E. Pirhalla, S. P. Orlando, andD. F. G. Farrow. 1999. National Estuarine Eutrophication Assessment: Effects of Nutrient Enrichment in the Nation’s Estuaries. National Oceanic and Atmospheric Administration, Silver Spring, Maryland.Google Scholar
  9. Caddy, J. F. 1993. Towards a comparative evaluation of human impacts on fishery ecosystems of enclosed and semi-enclosed seas.Reviews in Fisheries Sciences 1:57–95.Google Scholar
  10. Caddy, J. F. 2000. Marine catchment basin effects versus impacts of fisheries on semi-enclosed seas.ICES Journal of Marine Science 57:628–640.CrossRefGoogle Scholar
  11. Committee on Environment and Natural Resources (CENR) 2000. Integrated Assessment of Hypoxia in the Northern Gulf of Mexico. National Science and Technology Council, Washington, D.C.Google Scholar
  12. Cloern, J. E. 2001. Our evolving conceptual model of the coastal eutrophication problem.Marine Ecology Progress Series 210: 223–253.CrossRefGoogle Scholar
  13. Cohn, T. A., L. L. DeLong, E. J. Gilroy, R. M. Hirsch, andR. M. Wells. 1989. Estimating constituent loads.Water Resources Research 25:937–942.CrossRefGoogle Scholar
  14. Colijn, R. andK. Reise. 2001. Transboundary issues: Consequences for the Wadden Sea, p. 51–70.In B. von Bodungen and R. K. Turner (eds.). Science and Integrated Coastal Management. Dahlem University Press, Berlin, Germany.Google Scholar
  15. Conley, D. J. 2000. Biogeochemical nutrient cycles and nutrient management strategies.Hydrobiologica 410:87–96.CrossRefGoogle Scholar
  16. Conley, D. J., H. Kaas, F. Møhlenberg, B. Rasmussen, andJ. Wildolf, 2000. Characteristics of Danish estuaries.Estuaries 23:848–861.CrossRefGoogle Scholar
  17. Conley, D. J., S. Markager, J. Andersen, T. Ellermann, andL. M. Svendsen. 2002. Danish National Aquatic Monitoring and Assessment Program.Estuaries 25:848–861.Google Scholar
  18. Cooper, S. R. 1995. Chesapeake Bay watershed historical land use: Impact on water quality and diatom communities.Ecological Applications 5:703–723.CrossRefGoogle Scholar
  19. Cornwell, J. C., D. J. Conley, M. Owens, andJ. C. Stevenson. 1996. A sediment chronology of the eutrophication of Chesapeake Bay.Estuaries 19:488–499.CrossRefGoogle Scholar
  20. Corredor, J. E., R. W. Howarth, R. R. Twilley, andJ. M. Morell. 1999. Nitrogen cycling and anthropogenic impact in the tropical internamerican seas.Biogeochemistry 46:163–178.Google Scholar
  21. Costanza, R., A. Voinov, R. Boumans, T. Maxwell, F. Villa, L. Wainger, andH. Voinov. 2002. Integrated ecological economic modeling of the Patuxent River watershed, Maryland.Ecological Monographs 72:203–231.CrossRefGoogle Scholar
  22. Crouzet, P., J. Leonard, S. Nixon, Y. Rees, W. Parr, L. Laffon, J. Bøgestrand, P. Kristensen, C. Lallana, G. Izzo, T. Bokn, andJ. Bak. 1999. Nutrients in European Ecosystems. Environmental Assessment Report 4. European Environmental Agency, Copenhagen, Denmark.Google Scholar
  23. Dettmann, E. H. 2001. Effect of water residence time on annual export and denitrification of nitrogen in estuaries: A mode analysis.Estuaries 24:481–490.CrossRefGoogle Scholar
  24. Elmgren, R. 2001. Understanding human impact on the Baltic ecosystem: Changing views in recent decades.Ambio 30:222–231.CrossRefGoogle Scholar
  25. Elmgren, R. andU. Larsson. 2001. Eutrophication in the Baltic Sea area: Integrated coastal management issues, p. 15–35.In B. von Bodungen and R. K. Turner (eds) Science and Integrated Coastal Management. Dahlem University Press, Berlin, Germany.Google Scholar
  26. Fisher, T. R., A. B. Gustafson, K. Sellner, R. Lacouture, L. W. Haas, R. L. Wetzel, R. Magnien, D. Everitt, B. Michaels, andR. Karrh. 1999. Spatial and temporal variation of resource limitation in Chesapeake Bay.Marine Biology 133:763–778.CrossRefGoogle Scholar
  27. Greening, H. andC. Elfring. 2002. Local, state, regional and federal roles in coastal nutrient management.Estuaries 25: 838–847.Google Scholar
  28. Haas, P. M. 1990. Saving the Mediterranean: The Politics of International Environmental Cooperation. Columbia University Press, New York.Google Scholar
  29. Hagy, J. D. 2002. Eutrophication, hypoxia and trophic transfer efficiency in Chesapeake Bay. Ph.D. Dissertation, University of Maryland, College Park, Maryland.Google Scholar
  30. Harding, Jr.,L. H., D. Degobbis, andR. Precali. 1999. Production and fate of phytoplankton: Annual cycles and interannual variability, p. 131–172.In T. C. Malone, A. Malej, L. W. Harding, Jr., N. Smodlaka, and R. E. Turner(eds). Ecosystems at the Land-Sea Margin: Drainage Basin to Coastal Sea. American Geophysical Union, Washington, D.C.Google Scholar
  31. Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A. Downing, R. Elmgren, N. Caraco, T. Jorden, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, andZ. Zhao-Liang 1996. Regional nitrogen budgets and riverine nitrogen and phosphorus fluxes for the drainages to the North Atlantic Ocean: Natural and human influences.Biogeochemistry 35:75–139.CrossRefGoogle Scholar
  32. Jackson, J. B. C., M. X. Kirby, W. H. Berger, K. A. Bjordnal, L. W. Botsford, B. J. Bourque, R. H. Bradbury, R. Cooke, J. Erlandson, J. A. Estes, T. P. Hughes, S. Kidwell, C. B. Lange, H. S. Lenihan, J. M. Pandolfi, C. H. Peterson, R. S. Steneck, M. J. Tegner, andR. R. Warner. 2001. Historical overfishing and the recent collapse of coastal ecosystems.Science 293:629–638.CrossRefGoogle Scholar
  33. Jansson, B.-O. andK. Dahlberg. 1999. The environmental status of the Baltic Sea in the 1940s, today and in the future.Ambio 28:312–319.Google Scholar
  34. Jaworski, N. A. 1990. Retrospective of the water quality issues of the upper Potomac estuary.Aquatic Science 3:11–40.Google Scholar
  35. Johansson J. O. andH. S. Greening. 2000. Seagrass restoration in Tampa Bay: A resource-based approach to estuarine management, p. 279–293.In S. Bortone (ed.). Seagrasses: Monitoring, Ecology, Physiology and Management CRC Press, Boca Raton, Florida.Google Scholar
  36. Justić, D., T. Legović, andL. Rottini-Sandrini 1987. Trends in oxygen content 1911–1984 and occurrence of benthic mortility in the northern Adriatic Sea.Estuarine, Coastal, and Shelf Science 25:435–445.CrossRefGoogle Scholar
  37. Justić, D., N. N. Rabalais, andR. E. Turner. 1996. Effects of climate change on hypoxia in coastal waters: A doubled CO2 scenario for the northern Gulf of Mexico.Limnology and Oceanography 41:992–1003.Google Scholar
  38. Justić, D., N. N. Rabalais, R. E. Turner, andQ. Dortch. 1995. Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences.Estuarine, Coastal and Shelf Science 40:339–356.CrossRefGoogle Scholar
  39. Karlsen, A. W., T. M. Cronin, S. E. Ishman, D. A. Willard, C. W. Holmes, M. Marot, andR. Kerhin. 2000. Historical trends in Chesapeake Bay dissolved oxygen based on benthic Foraminifera from sediment cores.Estuaries 23:488–508.CrossRefGoogle Scholar
  40. Lewis, III,R. R., P. A. Clark, W. K. Fehring, H. S. Greening, R. O. Johansson, andR. T. Paul. 1998. The rehabilitation of the Tampa Bay estuary, Florida, USA, as an example of successful integrated coastal management.Marine Pollution Bulletin 37:468–473.CrossRefGoogle Scholar
  41. Linker, L., C. Stigall, C. Chang, andA. Donigian, 1996. Aquatic accounting: Chesapeake Bay watershed model quantifies nutrient loads.Water Environment and Technology 8:48–52.Google Scholar
  42. Long Island Sound Study. 1998. Phase III Actions for Hypoxia Management. EPA Long Island Sound Office. Stony Brook, New York.Google Scholar
  43. Malone, T. C., A. Malej, L. W. Harding, Jr.,N. Smodlaka, andR. E. Turner (eds.) 1999. Ecosystems at the Land-Sea Margin: Drainage Basin to Coastal Sea. American Geophysical Union, Washington, D.C.Google Scholar
  44. McComb, A. J. (ed.). 1995. Eutrophic Shallow Estuaries and Lagoons. CRC Press, Boca Raton, Florida.Google Scholar
  45. McIsaac, G. F., M. B. David, G. Z. Gertner, andD. A. Goolsby. 2001. Nitrate flux in the Mississippi River.Nature 414:166–167.CrossRefGoogle Scholar
  46. Mee, L. D. 2001. Eutrophication in the Black Sea and a basin-wide approach to its control, p. 71–91.In B. von Bodungen and R. K. Turner (eds.). Science and Integrated Coastal Management. Dahlem University Press, Berlin, Germany.Google Scholar
  47. Micheli, F. 1998. Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystemsScience 285: 1396–1398.CrossRefGoogle Scholar
  48. Mitsch, W. J. andJ. G. Gosselink 2000. Wetlands, 3rd edition. John Wiley and Sons, New York.Google Scholar
  49. Mitsch, W. J., J. W. Day, Jr.,J. W. Gilliam, P. M. Groffman, D. L. Hey, G. W. Randall, andN. Wang. 2001. Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River Basin: Strategies to counter a persistent ecological problem.BioScience 51:373–388.CrossRefGoogle Scholar
  50. Najjar, R. G., H. A. Walker, P. J. Anderson, E. J. Barro, R. J. Bord, J. R. Gibso, V. S. Kennedy, C. G. Knight, J. P. Megonigal, R. E. O’Connor, C. D. Polsky, N. P. Psuty, B. A. Richards, L. G. Sorenson, E. M. Steele, andR. S. Swanson. 2000. The potential impacts of climate change on the mid-Atlantic coastal region.Climate Research 14:219–233.CrossRefGoogle Scholar
  51. National Research Council (NRC). 1999. New Strategies for America’s Watersheds. National Academy Press, Washington, D.C.Google Scholar
  52. National Research Council (NRC). 2000. Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. National Academy Press, Washington, D.C.Google Scholar
  53. National Research Council (NRC) 2001. Assessing the TMDL Approach to Water Quality Management. National Academy Press, Washington D.C.Google Scholar
  54. Newell, R. I. E., J. C. Cornwell, and M. S. Owens. 2002. Influence of simulated bivalve biodeposition and microphytobenthos on sediment nutrient dynamics: A laboratory study.Limnology and Oceanography 47.Google Scholar
  55. Nixon, S. W. 1995. Coastal marine eutrophication: A definition, social causes, and future concerns.Ophelia 41:199–219.Google Scholar
  56. Nixon, S. W. 1997. Prehistoric nutrient inputs and productivity of Narragansett Bay.Estuaries 20:253–261.CrossRefGoogle Scholar
  57. Orth, R. J. andK. A. Moore. 1983. Chesapeake Bay: Unprecedented decline in submerged aquatic vegetation.Science 222: 51–53.CrossRefGoogle Scholar
  58. Paerl, H. W., R. L. Dennis, andD. R. Whitall. 2002. Atmospheric deposition of nitrogen: Implications for nutrient overenrichment of coastal waters.Estuaries 25:677–693.CrossRefGoogle Scholar
  59. Peterson, B. J., W. M. Wollheim, P. L. Mulholland, J. R. Webster, J. L. Meyer, J. L. Tank, E. M. Marti, W. B. Bowden, J. M. Valett, A. E. Hershey, W. H. McDowell, W. K. Dodds, S. K. Hamilton, S. Gregory, andD. D. Morall. 2001. Control of nitrogen export from watershed by headwater streams.Science 292:86–90.CrossRefGoogle Scholar
  60. Rabalais, N. N. 2002. Nitrogen in aquatic ecosystemsAmbio 31: 102–112.CrossRefGoogle Scholar
  61. Rabalais, N. N., R. E. Turner, D. Justić, Q. Dortch, W. J. Wiseman. Jr., and B. K. Sen Gupta. 1996. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf,Estuaries 19:386–407.CrossRefGoogle Scholar
  62. Rabalais, N. N., R. E. Turner, andD. Scavia. 2002. Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River.BioScience 52:129–142.CrossRefGoogle Scholar
  63. Rosenberg, R., R. Elmgren, S. Fleischer, P. Jonsson, G. Persson, andH. Dahlin. 1990. Marine eutrophication case studies in Sweden.Ambio 19:102–108.Google Scholar
  64. Ryther, J. H. andW. M. Dunstan 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment.Science 171:1008–1012.CrossRefGoogle Scholar
  65. Sharpley, A. N. 2000. Agriculture and Phosphorus Management: The Chesapeake Bay. Lewis Publishers Boca Raton, Florida.Google Scholar
  66. Smith, R. A., G. E. Schwarz, andR. B. Alexander. 1997. Regional interpretation of water quality monitoring data.Water Resources Research 33:2781–2798.CrossRefGoogle Scholar
  67. Suzuki, T. 2001., Oxygen-deficient waters along the Japanese coast and their effects upon the estuarine ecosystem.Journal of Environmental Quality 30:291–302.CrossRefGoogle Scholar
  68. Tilman, D., J. Fargione, B. Wolff, C. D’Antonio, A. Dobson, R. Howarth, D. Schindler, W. H. Schlesinger, D. Simberloff, andD. Swackhamer. 2001. Forecasting agriculturally driven global environmental change.Science 292:281–284.CrossRefGoogle Scholar
  69. United States Environmental Protection Agency (USEPA). 1995. The Great Lakes: An Environmental Atlas and Resource Book. EPA-905-B-95-001. U.S. Environmental Protection Agency, Washington, D.C.Google Scholar
  70. United States Environmental Protection Agency (USEPA). 2000. Deposition of air pollutants to the Great Waters: Third Report to Congress. EPA-453-R-00-005. U.S. Environmental Protection Agency, Washington, D.C.Google Scholar
  71. Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, andD. G. Tilman. 1997. Human alteration of the global nitrogen cycle: Sources and consequences.Ecological Applications 7:737–750.Google Scholar
  72. Zaitsev, Y. P. 1999. Eutrophication of the Black Sea and its major consequences, p. 58–74.In L. D. Mee and G. Topping (eds.). Black Sea Pollution Assessment. Black Sea Environmental Series, Volume 10. UN Publications, New York.Google Scholar
  73. Zimmerman, A. R. andE. A. Canuel. 2000. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: Anthropogenic influence on organic matter composition.Marine Chemistry 69:117–137.CrossRefGoogle Scholar

Sources of Unpublished Materials

  1. Galloway, J. N. Personal communication. Department of Environmental Science, University of Virginia, Charlottesville, Virginia.Google Scholar
  2. Walters, C. 1997. Challenges in adaptive management of riparian and coastal ecosystems.Conservation Ecology [online] 1: 1. http://www.consecol.org/voll/iss2/art 1.Google Scholar

Copyright information

© Estuarine Research Federation 2002

Authors and Affiliations

  1. 1.University of Maryland Center for Environmental ScienceCambridge

Personalised recommendations