Estuaries

, Volume 25, Issue 4, pp 656–676

Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals

Article

Abstract

Some 60% of coastal rivers and bays in the U.S. have been moderately to severely degraded by nutrient pollution. Both nitrogen (N) and phosphorus (P) contribute to the problem, although for most coastal systems N additions cause more damage. Globally, human activity has increased the flux of N and P from land to the oceans by 2-fold and 3-fold, respectively. For N, much of this increase has occurred over the past 40 years, with the increase varying by region. Human activity has increased the flux of N in the Mississippi River basin by 4-fold, in the rivers of the northeastern U.S. by 8-fold, and in the rivers draining to the North Sea by more than 10-fold. The sources of nutrients to the coast vary. For some estuaries, sewage treatment plants are the largest single input; for most systems nonpoint sources of nutrients are now of relatively greater importance, both because of improved point source treatment and control (particularly for P) and because of increases in the total magnitude of nonpoint sources (particularly for N) over the past three decades. For P, agricultural activities dominate nonpoint source fluxes. Agriculture is also the major source of N in many systems, including the flux of N down the Mississippi River, which has contributed to the large hypoxic zone in the Gulf of Mexico. For both P and N, agriculture contributes to nonpoint source pollution both through losses at the field scale, as soils erode away and fertilizer is leached to surface and ground waters, and from losses from animal feedlot operations. In the U.S. N from animal wastes that leaks directly to surface waters or is volatilized to the atmosphere as ammonia may be the single largest source of N that moves from agricultural operations into coastal waters. In some regions, including the northeastern U.S., atmospheric deposition of oxidized N from fossil-fuel combustion is the major flux from nonpoint sources. This atmospheric component of the N flux into estuaries has often been underestimated, particularly with respect to deposition onto the terrestrial landscape with subsequent export downstream. Because the relative importance of these nutrient sources varies among regions and sites, so too must appropriate and effective mitigation strategies. The regional nature and variability of nutrient sources require that nutrient management efforts address large geographic areas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aber, J. D. andC. T. Driscoll. 1997. Effects of land use, climate variation, and nitrogen deposition on nitrogen cycling and carbon storage in northern hardwood forests.Global Biogeochemical Cycles 11:639–648.CrossRefGoogle Scholar
  2. Aber, J. D., K. J. Nadelhoffer, P. Steudler, andJ. M. Melillo. 1989. Nitrogen saturation in northern forest ecosystems.BioScience 39:378–386.CrossRefGoogle Scholar
  3. Aber, J. D., S. V. Ollinger, andC. T. Driscoll. 1997. Modeling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition.Ecological Modeling 101:61–78.CrossRefGoogle Scholar
  4. Alexander, R. B., P. J. Johnes, E. A. Boyer, andR. A. Smith. 2002. A comparison of models for estimating the riverine export of nitrogen from large watersheds.Biogeochemistry 57: 295–339.CrossRefGoogle Scholar
  5. Alexander, R. B., R. A. Smith, andG. E. Schwarz. 2000. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico.Nature 403:758–761.CrossRefGoogle Scholar
  6. Bashkin, V. N. 1997. The critical load concept for emission abatement strategies in Europe: A review.Environmental Conservation 24:5–13.CrossRefGoogle Scholar
  7. Bengston, L., P. Seuna, A. Lepisto, andR. K. Saxena. 1992. Particle movement of meltwater in a subdrained agricultural basin.Journal of Hydrology 135:383–398.CrossRefGoogle Scholar
  8. Bock, B. R. 1984. Efficient use of nitrogen in cropping system, p. 273–294.In R. D. Hauck (ed.), Nitrogen in Crop Production. American Society of Agronomists, Madison, Wisconsin.Google Scholar
  9. Bouwman, A. F. andH. Booij. 1998. Global use and trade of feedstuffs and consequences for the nitrogen cycle.Nutrient Cycling in Agroecosystems 52:261–267.CrossRefGoogle Scholar
  10. Bouwman, A. F., D. S. Lee, A. H. Asman, F. J. Dentener, K. W. van der Hoek, andJ. G. J. Olivier. 1997. A global high-resolution emission inventory for ammonia.Global Biogeochemical Cycles 11:561–587.CrossRefGoogle Scholar
  11. Boynton, W. R., J. H. Garber, R. Summers, andW. M. Kemp. 1995. Inputs, transformations, and transport to nitrogen and phosphorus in Chesapeake Bay and selected tributaries.Estuaries 18:285–314.CrossRefGoogle Scholar
  12. Bredemeier, M., K. Blanck, Y. J. Xu, A. Tieteam, A. W. Boxman, B. A. Emmett, F. Moldan, P. Gundersen, P. Schleppi, andR. F. Wright. 1998. Input-output budgets at the NITREX sites.Forest Ecology and Management 101:57–64.CrossRefGoogle Scholar
  13. Bricker, S. B., C. G. Clement, D. E. Pirhalla, S. P. Orlando, andD. G. G. Farrow. 1999. National Estuarine Eutrophication Assessment: Effects of Nutrient Enrichment in the Nation’s Estuaries. National Ocean Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland.Google Scholar
  14. Campbell, J. L., J. W. Hornbeck, W. H. McDowell, D. C. Buso, J. B. Shaley, andG. E. Likens. 2000. Dissolved organic nitrogen budgets for upland, forested ecosystems in New England.Biogeochemistry 49:123–142.CrossRefGoogle Scholar
  15. Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley, andV. H. Smith. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen.Issues in Ecology 3:1–12.Google Scholar
  16. Cleveland, C. C., A. R. Townsend, D. S. Schimel, H. Fisher, R. W. Howarth, L. O. Hedin, S. S. Perakis, E. F. Latty, J. C. von Fischer, A. Elseroad, andM. F. Wasson. 1999. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems.Global Biogeochemical Cycles 13:623–645.CrossRefGoogle Scholar
  17. Dodds, W. K., J. M. Blari, G. M. Henebry, J. K. Koelliker, R. Ramundo, andC. M. Tate. 1996. Nitrogen transport from tall grass prairie watersheds.Journal of Environmental Quality 25: 973–981.Google Scholar
  18. Durka, W., E. D. Schultze, G. Gebauer, andS. Voerkelius. 1994. Effects of forest decline on uptake and leaching of deposited nitrate determined from15N and18O measurements.Nature 372:765–767.CrossRefGoogle Scholar
  19. Ekholm, P. 1994. Bioavailability of phosphorus in agriculturally loaded rivers in southern Finland.Hydrobiologia 287:179–194.Google Scholar
  20. Emmett, B. A., D. Boxman, M. Bredemeier, P. Gundersen, O. J. Kjønaas, F. Moldan, P. Schleppi, A. Tietema, andR. F. Wright. 1998. Predicting the effects of atmospheric deposition in conifer stands: Evidence from the NITREX ecosystem-scale experiments.Ecosystems 1:352–360.CrossRefGoogle Scholar
  21. Emmett, B. A. andB. Reynolds. 1996. Nitrogen critical loads for spruce plantations in Wales: Is there too much nitrogen?Forestry 69:200–214.CrossRefGoogle Scholar
  22. Environmental Protection Agency. 1983. Results of the Nationwide Urban Runoff Program. U.S. Government Printing Office, Washington, D.C.Google Scholar
  23. Environmental Protection Agency. 1999. Deposition of air pollutants to the great waters. Third Report to Congress. U.S. Government Printing Office, Washington, D.C.Google Scholar
  24. Evans, R., L. C. Cuffman-Neff, andR. Nehring. 1996. Increases in agricultural productivity, 1948–1993.In Updates on Agricultural Resources and Environmental Indicators No. 6. U.S. Department of Agriculture-Economic Research Service, U.S. Government Printing Office, Washington, D.C.Google Scholar
  25. Fahey, T. J., C. J. Williams, J. N. Rooney-Varga, C. C. Cleveland, K. M. Postek, S. D. Smith, andD. R. Bouldin. 1999. Nitrogen deposition in and around an intensive agricultural district in central New York.Journal of Environmental Quality 28:1585–1600.Google Scholar
  26. Fisher, H. B. andM. Oppenheimer. 1991. Atmospheric nitrate deposition and the Chesapeake Bay estuary.Ambio 20:102.Google Scholar
  27. Galloway, J. N., W. H. Schlesinger, C. Levy, A. Michaels, andJ. L. Schnoor. 1995. Nitrogen fixation: Anthropogenic enhancement and environmental response.Global Biogeochemical Cycles 9:235–252.CrossRefGoogle Scholar
  28. Gardner, G. 1998. Recycling organic wastes, p. 96–112.In L. Brown, C. Flavin, and H. French (eds.), State of the World. W. W. Norton, New York.Google Scholar
  29. Gburek, W. J. andA. N. Sharpley. 1998. Hydrologic controls on phosphorus loss from upland agricultural watersheds.Journal of Environmental Quality 27:267–277.Google Scholar
  30. Gburek, W. J., A. N. Sharpley, A. L. Heathwaite, andG. J. Folmar. 2000. Phosphorus management at the watershed scale: A modification of the phosphorus index.Journal of Environmental Quality 29:130–144.Google Scholar
  31. Goolsby, D. A. andW. A. Battaglin. 2000. Nitrogen in the Mississippi River basin: Estimating sources and predicting flux to the Gulf of Mexico. U.S. Geological Survey Fact Sheet, FS-135-00. U.S. Geological Survey, Reston, Virginia.Google Scholar
  32. Goolsby, D. A., W. A. Battaglin, G. B. Lawrence, R. S. Artz, B. T. Aulenbach, R. P. Hooper, D. R. Kenney, andG. J. Stensland. 1999. Flux and sources of nutrients in the Mississippi-Atchafalaya River basin: Topic 3, Report for the integrated assessment of hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program Decision Analysis Series No. 17. National Oceanic and Atmospheric Administration Coastal Ocean Office, Silver Spring, Maryland.Google Scholar
  33. Gundersen, P. andV. Bashkin. 1994. Nitrogen cycling.In N. Moldan and J. Cerny (eds.), Biogeochemistry of Small Catchments: A Tool for Environmental Research. John Wiley and Sons, Chichester, U.K.Google Scholar
  34. Hauhs, M., K. Rost-Siebert, G. Ragen, T. Paces, andB. Vigerus. 1989. Summary of European data: The role of nitrogen in the acidification of soils and surface waters.Miljorapport 10: 92.Google Scholar
  35. Heathwaite, A. L. andP. J. Johnes. 1996. The contribution of nitrogen species and phosphorus fractions to stream water quality in agricultural catchments.Hydrological Processes 10: 971–983.CrossRefGoogle Scholar
  36. Hedin, L. O., J. J. Armesto, andA. H. Johnson. 1995. Patterns of nutrient loss from unpolluted old-growth temperate forests: Evaluation of biogeochemical theory.Ecology 76:493–509.CrossRefGoogle Scholar
  37. Hedley, M. J. andA. N. Sharpley. 1998. Strategies for global nutrient cycling, p. 70–95.In L. Currie (ed.), Long-Term Nutrient Needs for New Zealand’s Primary Industries: Global Supply, Production Requirements and Environmental Constraints. The Fertilizer and Lime, Research Centre, Massey University, Palmerston North, New Zealand.Google Scholar
  38. Hetling, L. J., N. A. Jaworski, andD. J. Garetson. 1996. Comparison of in put loadings and riverine export fluxes in large watersheds.In Third International Conference on Diffuse Pollution. International Association of Water Quality, Edinburgh, Scotland.Google Scholar
  39. Hobbie, J. E. andG. E. Likens. 1973. Output of phosphorus, organic carbon, and fine particulate carbon from Hubbard Brook watersheds.Limnology and Oceanography 18:734–742.CrossRefGoogle Scholar
  40. Holland, E. A., F. J. Dentener, B. H. Braswell, andJ. M. Sulzman. 1999. Contemporary and pre-industrial global reactive nitrogen budgets.Biogeochemistry 46:7–43.Google Scholar
  41. House, W. A. andH. Casey. 1988. Transport of phosphorus in rivers, p. 253–282.In H. Tiessen (ed.), Phosphorus in the Global Environment. John Wiley, New York.Google Scholar
  42. Howarth, R. W. 1988. Nutrient limitation of net primary production in marine ecosystems.Annual Reviews in Ecology and Systematics 19:89–110.CrossRefGoogle Scholar
  43. Howarth, R. W. 1998. An assessment of human influences on inputs of nitrogen to the estuaries and continental shelves of the North Atlantic Ocean.Nutrient Cycling in Agroecosystems 52: 213–223.CrossRefGoogle Scholar
  44. Howarth, R., D. Anderson, J. Cloern, C. Elfring, C. Hopkinson, B. Lapointe, T. Malone, N. Marcus, K. McGlathery, A. Sharpley, andD. Walker. 2000. Nutrient pollution of coastal rivers, bays, and seas.Issues in Ecology 7:1–15.Google Scholar
  45. Howarth, R. W., G. Billen, D. Swaeny, A. Townsend, N. Jaworski, K. Lajtha, J. A. Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, andZ. Zaho-Lina. 1996. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: Natural and human influencesBiogeochemistry 35:75–139.CrossRefGoogle Scholar
  46. Howarth, R. W., E. Boyer, W. Pabich, andJ. Galloway. 2002. Nitrogen use in the United States from 1961–2000, and estimates of potential future trends.Ambia 31:88–96.CrossRefGoogle Scholar
  47. Howarth, R. W., H. S. Jensen, R. Marino, andH. Postma. 1995. Transport to and processing of phosphorus in nearshore and oceanic waters, p. 323–345.In H. Tiessen (ed.), Phosphorus in the Global Environment. John Wiley, New York.Google Scholar
  48. Isserman, K. 1990. Share of agriculture in nitrogen and phosphorus emissions into the surface waters of western Europe against the background of their eutrophication.Fertilizer Research 26:253–269.CrossRefGoogle Scholar
  49. Jaworski, N. A. 1990. Retrospective study of the water quality issues of the upper Potomac estuary.Aquatic Science 3:11–40.Google Scholar
  50. Jaworski, N. A., R. W. Howarth, andL. J. Hetling. 1997. Atmospheric deposition of nitrogen oxides onto the landscape contributes to coastal eutrophication in the northeast United States.Environmental Science and Technology 31:1995–2004.CrossRefGoogle Scholar
  51. Johnson, D. W. 1992. Nitrogen retention in forest soils.Journal of Environmental Quality 21:1–12.Google Scholar
  52. Johnston, D. W. andS. E. Lindberg (eds.) 1992. Atmospheric Deposition and Forest Nutrient Cycling: A Synthesis of the Integrated Forest Study. Springer-Verlag, New York.Google Scholar
  53. Kellogg, R. L. andC. H. Lander. 1999. Trends in the potential for nutrient loadings from confined livestock operations.In The State of North America’s Private Land. U.S. Government Printing Office, Washington, D.C.Google Scholar
  54. Lajtha, K., B. Seely, andI. Valiela. 1995. Retention and leaching losses of atmospherically derived nitrogen in the aggrading coastal watershed of Waquoit Bay, Massachusetts.Biogeochemistry 28:33–54.CrossRefGoogle Scholar
  55. Lander, C. H., D. Moffitt, andK. Alt. 1998. Nutrients Available from Livestock Manure Relative to Crop Growth Requirements. Resource Assessment and Strategic Planning Working Paper 98-1. U.S. Department of Agriculture, Natural Resources Conservation Service, Washington, D.C.Google Scholar
  56. Lanyon, L. E. andP. B. Thompson. 1996. Changing emphasis of farm production, p. 15–23In M. Salis and J. Popow (eds.), Animal Agriculture and the Environment: Nutrients, Pathogens, and Community Relations. Northeast Regional Agricultural Engineering Service, Ithaca, New York.Google Scholar
  57. Lewis, W. M. 2000. Yield of nitrogen from minimally disturbed watersheds of the United States.Biogeochemistry 57:375–385.CrossRefGoogle Scholar
  58. Lewis, W. M., J. M. Melack, W. H. McDowell, M. McClain, andJ. E. Richey. 1999. Nitrogen yields from undisturbed watersheds in the Americas.Biogeochemistry 46:149–162.Google Scholar
  59. Litke, D. W. 1999. Review of phosphorus control measures in the United States and their effects on water quality. Water-Resources Investigations Report 99-4007. U.S. Geological Survey, Denver, Colorado.Google Scholar
  60. Lovett, G. M. andS. E. Lindberg. 1993. Atmospheric deposition and canopy interactions of nitrogen in forests.Canadian Journal of Forest, Research 23:1603–1616.CrossRefGoogle Scholar
  61. Magill, A. H., J. D. Aber, J. J. Hendricks, R. D. Bowden, J. M. Melillo, andP. A. Steuder. 1997. Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition.Ecological Applications 7:402–415.CrossRefGoogle Scholar
  62. Matson, P. A., W. J. Parton, A. G. Power, andM. J. Swift. 1997. Agricultural intensification and ecosystem properties.Science 277:504–509.CrossRefGoogle Scholar
  63. McIsaac, G. F., M. B. David, G. Z. Gertner, andD. A. Goolsby. 2001. Net anthropogenic N input to the Mississippi River basin and nitrate flux to the Gulf of Mexico.Nature 414:166–167.CrossRefGoogle Scholar
  64. Meade, R. H. 1988. Movement and storage of sediment in river systems, p. 165–179.In A. Lerman and M. Meybeck (eds.), Physical and Chemical Weathering in Geochemical Cycles. Kluwer, Dordrecht.Google Scholar
  65. National Research Council. 1993a. Managing Wastewater in Coastal Urban Areas. National Academy Press, Washington. D.C.Google Scholar
  66. National Research Council. 1993b. Soil and Water Quality: An Agenda for Agriculture. National Academy Press, Washington, D.C.Google Scholar
  67. National Research Council. 2000. Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. National Academy Press, Washington, D.C.Google Scholar
  68. Nelson, D. 1985. Minimizing nitrogen losses in non-irrigated eastern areas, p. 173–209.In Plant Nutrient Use and the Environment. Fertilizer Institute, Washington, D.C.Google Scholar
  69. Nixon, S. W., J. W. Ammerman, L. P. Atkinson, V. M. Berounsky, G. Billen, W. C. Boicourt, W. R. Boyton, T. M. Church, D. M. DiToro, R. Elmgren, J. H. Garber, A. E. Giblin, R. A. Jahnke, N. J. P. Owens, M. E. Q. Pilson, andS. P. Seitzinger. 1996. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean.Biogeochemistry 35:141–180.CrossRefGoogle Scholar
  70. Omernik, J. M. 1977. Nonpoint Source-Stream Nutrient Level Relationships: A Nationwide Study. EPA-600/3-77-105. Environmental Protection Agency, Corvallis, Oregon.Google Scholar
  71. Paerl, H. W. 1985. Enhancement of marine primary production by nitrogen-enriched acid rain.Nature 316:747–749.CrossRefGoogle Scholar
  72. Paerl, H. W. 1997. Coastal eutrophication and harmful algal blooms: The importance of atmospheric and groundwater as “new” nitrogen and other nutrient sources.Limnology and Oceanography 42:1154–1165.Google Scholar
  73. Paerl, H. W. andR. Whitall. 1999. Anthropogenically derived atmospheric nitrogen deposition, marine eutrophication and harmful algal bloom expansion: Is there a link?.Ambio 28:307–311.Google Scholar
  74. Pardo, L. andC. Driscoll. 1993. A critical review of mass balance methods for calculating critical loads of nitrogen for forested ecosystems.Environment 1:145–156.Google Scholar
  75. Pionke, H. B., W. J. Gburek, andA. N. Sharpley. 2000. Critical source area controls on water quality in an agricultural, watershed located in the Chesapeake basin.Ecological Engineering 14:325–335.CrossRefGoogle Scholar
  76. Prospero, J. M., K. Barrett, T. Church, F. Dentner, R. A. Duce, J. N. Galloway, H. Levy, J. Moddy, andP. Quinn. 1996. Atmospheric deposition of nutrient to the North Atlantic basin.Biogeochemistry 35:75–139.CrossRefGoogle Scholar
  77. Rast, W. andG. F. Lee. 1978. Summary Analysis of the North American OECD Eutrophication Project: Nutrient Loading, Lake Response Relationships, and Trophic State Indices. EPA 600/3-78-008. U.S. Environmental Protection Agency, Corvalis, Oregon.Google Scholar
  78. Ryden, J. C., J. K. Syers, andR. F. Harris. 1973. Phosphorus in runoff and streams.Advances in Agronomy 25:1–45.CrossRefGoogle Scholar
  79. Schoumans, O. F. andA. Breeuwsma. 1997. The relation between accumulation and leaching of phosphorus: Laboratory, field and modelling results, p. 361–363.In H. Tunney, O. T. Carton, P. C. Brookes, and A. E. Johnston (eds.), Phosphorus Loss from Soil to Water. CAB International Press, Cambridge, U.K.Google Scholar
  80. Schreiber, J. D., P. D. Duffy, andD. C. McClurkin. 1976. Dissolved nutrient losses in storm runoff from five southern pine watersheds.Journal of Environmental Quality 5:201–205.Google Scholar
  81. Schulze, E. D., W. de Vries, M. Hauhs, K. Rosen, L. Rasmussen, O. C. Tann, andJ. Nilsson. 1989. Critical loads for nitrogen deposition in forest ecosystems.Water, Air, and Soil Pollution 48:451–456.CrossRefGoogle Scholar
  82. Seitzinger, S. P., R. V. Styles, E. W. Boyer, R. Alexander, G. Billen, R. Howarth, B. Mayer, and N. van Breemen. 2002. Nitrogen retention in rivers: Model development and application to watersheds in the northeastern U. S.Biogeochemistry in press.Google Scholar
  83. Sharpley, A. N. 1993. Assessing phosphorus bioavailability in agricultural soils and runoff.Ferlilizer Research 36:259–272.CrossRefGoogle Scholar
  84. Sharpley, A. N., S. C. Chapra, R. Wedepohl, J. T. Sims, T. C. Daniel, andK. R. Reddy. 1994. Managing agricultural phosphorus for protection of surface waters: Issues and options.Journal of Environmental Quality 23:437–451.Google Scholar
  85. Sharpley, A. N., W. J. Gburek, andG. Folmar. 1998. Integrated phosphorus and nitrogen management in animal feeding operations for water quality protection, p. 72–94.In R. W. Masters and D. Goldman (eds.), Animal Feeding Operations and Ground Water: Issues, Impacts, and Solutions. National Ground Water Association, Westerville, Ohio.Google Scholar
  86. Sharpley, A. N., M. J. Hedley, E. Sibbesen, A. Hillbricht-Ilkowsk, W. A. House, andL. Ryszkowski. 1995. Phosphorus transfers from terrestrial to aquatic ecosystems, p. 173–242.In H. Tiessen (ed.), Phosphorus in the Global Environment. John Wiley, Chichester, U.K.Google Scholar
  87. Sharpley, A. N. andS. Rekolainen. 1997. Phosphorus in agriculture and its environmental implications, p. 1–54,In H. Tunney O. T. Carton P. C. Brookes, and A. E. Johnston (eds.), Phosphorus Loss from Soil to Water. CAB International Press, Cambridge, U.K.Google Scholar
  88. Sharpley, A. N. andJ. K. Syers. 1979. Loss of nitrogen and phosphorus in tile drainage as influenced by urea application and grazing animals.New Zealand Journal of Agricultural Research 22:127–131.Google Scholar
  89. Sims, J. T., R. R. Simard, andB. C. Joern. 1998. Phosphorus losses in agricultural drainage: Historical perspective and current research.Journal of Environmental Quality 27:277–293.CrossRefGoogle Scholar
  90. Skeffington, R. A. 1999. The use of critical loads in environmental policy making: A critical appraisal.Environmental Science and Technology 33:245.Google Scholar
  91. Smil, V. 2001. Enriching the Earth. MIT Press, Cambridge, Massachusetts.Google Scholar
  92. Smith, R. A., R. B. Alexander, andM. G. Wolman. 1987. Waterquality trends in the nation’s rivers.Science 235: 1607–1615.CrossRefGoogle Scholar
  93. Smith, R. A. G. E. Schwarz, andR. B. Alexander. 1997. Regional interpretation of water-quality monitoring data.Water Resources Research 33:2781–2798.CrossRefGoogle Scholar
  94. Taylor, A. W., W. M. Edwards, andE. C. Simpson 1971. Nutrients in streams draining woodland and farmland near Coshocton, Ohio.Water Resources Research 7:81–90.CrossRefGoogle Scholar
  95. U.S. Department of Agriculture. 1989. Fact Book of Agriculture. Miscellaneous Publications No1063. Office of Public Affairs, Washington, D.C.Google Scholar
  96. Valigura, R. A., R. B. Alexander, M. S. Castro, T. P. Meyers, H. W. Paerl, P. E. Stacey, andR. E. Turner (eds.). 2000. Nitrogen Loading in Coastal Water Bodies. An Atmospheric Perspective. Coastal and Estuaries Series, No. 57. American Geophysical Union, Washington, D.C.Google Scholar
  97. van Breemen, N., E. W. Boyer, C. L. Goodale, N. A. Jaworski, S. Seitzinger, K. Paustian, L. Hetling, K. Lajtha, M. Eve, B. Mayer, D. van Dam, R. W. Howarth, K. J. Nadelhoffer, and G. Billen. 2002. Nitrogen budgets for 16 watersheds draining to the northeastern U.S. coast: Storage and losses of nitrogen inputs.Biogeochemistry in press.Google Scholar
  98. van Breemen, N., P. A. Burroughs, E. J. Velthorst, H. F. van Dobben, T. de Wit, T. B. Ridder, andH. F. R. Reijnders. 1982. Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall.Nature 299:548–550.CrossRefGoogle Scholar
  99. Vitousek, P. M., J. Aber, S. E. Bayley, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, andG. D. Tilman. 1997. Human alteration of the global nitrogen cycle: Causes and consequences.Ecological Issues 1:1–15.Google Scholar
  100. Vitousek, P. M. andR. W. Howarth. 1991. Nitrogen limitation on land and sea: How can it occur?.Biogeochemistry 13:87–115.CrossRefGoogle Scholar
  101. Vitousek, P. M. andW. A. Reiners. 1975. Ecosystem succession and nutrient retention: A hypothesis.BioScience 25:376–381.CrossRefGoogle Scholar
  102. Whelpdale, D. M., P. Summer, andE. Sanhuez. 1997. A global overview of atmospheric acid deposition fluxes.Environmental Monitoring and Assessment 48:217–227.CrossRefGoogle Scholar
  103. Whitehead, D. C. andN. Raistrick. 1990. Ammonia volatilization from five nitrogen compounds used as fertilizers following surface application to soils.Journal of Soil Science 41:387–394.CrossRefGoogle Scholar
  104. Williams, M. W., J. S. Baron, N. Caine, R. Sommerfeld, andR. J. Sanford. 1996. Nitrogen saturation in the Rocky Mountains.Environmental Science and Technology 30:640–646.CrossRefGoogle Scholar
  105. Zarbock, H. W., A. J. Janicki, and S. S. Janicki. 1996. Estimates of Total Nitrogen, Total Phosphorus, and Total Suspended Solids to Tampa Bay, Florida. Tampa Bay National Estuary Program Technical Publication #19-96. St. Petersburg, Florida.Google Scholar

Sources of Unpublished Materials

  1. Food and Agriculture Organization. 1999. FAOSTAT Agriculture Data. http://apps.fao.org/cgi-bin/nph-dp.pl?subset=agriculture.Google Scholar
  2. Smith, R. A. Personal Communication. United States Geological Survey, Reston, Virginia.Google Scholar

Copyright information

© Estuarine Research Federation 2002

Authors and Affiliations

  • Robert W. Howarth
    • 1
    • 2
  • Andrew Sharpley
    • 3
  • Dan Walker
    • 4
    • 5
  1. 1.Marine Biological LaboratoryThe Ecosystems CenterWoods Hole
  2. 2.Department of Ecology and Evolutionary BiologyCornell UniversityIthaca
  3. 3.Agricultural Research Service, Pasture Systems and WatershedsU.S. Department of AgricultureState College
  4. 4.Oceans Studies BoardThe National AcademiesWashington, D.C.
  5. 5.The Marine Policy CenterWoods Hole Oceanographic InstitutionWoods Hole

Personalised recommendations