Estuaries

, Volume 25, Issue 4, pp 497–507 | Cite as

Effects of tidal shallowing and deepening on phytoplankton production dynamics: A modeling study

Article

Abstract

Processes influencing estuarine phytoplankton growth occur over a range of time scales, but many conceptual and numerical models of estuarine phytoplankton production dynamics neglect mechanisms occurring on the shorter (e.g., intratidal) time scales. We used a numerical model to explore the influence of short time-scale variability in phytoplankton sources and sinks on long-term growth in an idealized water column that shallows and deepens with the semidiurnal tide. Model results show that tidal fluctuations in water surface elevation can determine whether long-term phytoplankton growth is positive or negative. Hourly-scale interactions influencing weekly-scale to monthly-scale phytoplankton dynamics include intensification of the depth-averaged benthic grazing effect by water column shallowing and enhancement of water column photosynthesis when solar noon coincides with low tide. Photosynthesis and benthic consumption may modulate over biweekly time scales due to spring-neap fluctuations in tidal range and the 15-d cycle of solar noon-low tide phasing. If tidal range is a large fraction of mean water depth, then tidal shallowing and deepening may significantly influence net phytoplankton growth. In such a case, models or estimates of long-term phytoplankton production dynamics that neglect water surface fluctuations may overestimate or underestimate net growth and could even predict the wrong sign associated with net growth rate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bannister, T. T. 1974. A general theory of steady state phytoplankton growth in a nutrient saturated mixed layer.Limnology and Oceanography 19:13–30.Google Scholar
  2. Casulli, V. 1990a. Numerical simulation of shallow water flow, p. 13–22.In G. Gambolati, A. Rinaldo, C. A. Brebbia, W. G. Gray, and G. F. Pinder (eds.), Computational Methods in Surface Water Hydrology. Springer-Verlag, Berlin, Germany.Google Scholar
  3. Casulli, V. 1990b. Semi-implicit finite-difference methods for the two-dimensional shallow water equations.Journal of Computational Physics 86:56–74.CrossRefGoogle Scholar
  4. Chen, J.-Y., S.-Z. Zhu, Q.-R. Lu, Y. Zhou, andS. He. 1982. Descriptions of the morphology and sedimentary structures of the river mouth bar in the Chang Jiang estuary, p. 667–675.In V. S. Kennedy (ed.), Estuarine Comparisons. Academic Press, New York.Google Scholar
  5. Cheng, R. T., V. Casulli, andJ. W. Gartner. 1993. Tidal, residtual intertidal mudflat (TRIM) model and its applications to San Francisco Bay, California.Estuarine, Coastal and Shelf Science 36:235–280.CrossRefGoogle Scholar
  6. Cloern, J. E. 1982. Does the benthos control phytoplankton biomass in South San Francisco Bay?Marine Ecology Progress Series 9:191–202.CrossRefGoogle Scholar
  7. Cloern, J. E. 1996. Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California.Reviews of Geophysics 34:127–168.CrossRefGoogle Scholar
  8. Cloern, J. E., C. Grenz, andL. V. Lucas. 1995. An empirical model of the phytoplankton chlorophyll:carbon ratio—The conversion factor between productivity and growth rate.Limnology and Oceanography 40:1313–1321.CrossRefGoogle Scholar
  9. Cloern, J. E., T. M. Powell, andL. M. Huzzey. 1989. Spatial and temporal variability in South San Francisco Bay (USA). II. Temporal changes in salinity, suspended sediments, and phytoplankton biomass and productivity over tidal time scales.Estuarine, Coastal and Shelf Science 28:599–613.CrossRefGoogle Scholar
  10. Dyer, K. R. 1984. Sedimentation processes in the Bristol Channel/Severn estuary.Marine Pollution Bulletin 15:53–57.CrossRefGoogle Scholar
  11. Eisma, D. 1998. Intertidal Deposits—River Mouths, Tidal Flats, and Coastal Lagoons. CRC Press, Boca Raton, Florida.Google Scholar
  12. Emmett, R., R. Liansó, J. Newton, R. Thom, M. Hornberger, C. Morgan, C. Levings, A. Copping, andP. Fishman. 2000. Geographic signatures of North American West Coast estuaries.Estuaries 23:765–792.CrossRefGoogle Scholar
  13. Foreman, M. G. G. 1978. Manual for tidal currents analysis and prediction. PMS Report No. 78-6. Institute of Ocean Sciences, Patricia Bay, Sidney, British Columbia.Google Scholar
  14. Glover, R. S. 1984. The Bristol Channel—A case for special treatment.Marine Pollution Bulletin 15:37–40.CrossRefGoogle Scholar
  15. Gross, E. S., J. R. Koseff, andS. G. Monismith. 1999. Evaluation of advective schemes for estuarine salinity simulations.Journal of Hydraulic Engineering 125:32–46.CrossRefGoogle Scholar
  16. Huzzey, L M., J. E. Cloern, andT. M. Powell. 1990. Episodic changes in lateral transport and phytoplankton distribution in South San Francisco Bay.Limnology and Oceanography 35: 472–478.Google Scholar
  17. Joint, I. R. andA. J. Pomroy. 1981. Primary production in a turbid estuary.Estuarine, Coastal and Shelf Science 13:303–316.CrossRefGoogle Scholar
  18. Koseff, J. R., J. K. Holen, S. G. Monismith, andJ. E. Cloern. 1993. Coupled effects of vertical mixing and benthic grazing on phytoplankton populations in shallow, turbid estuaries.Journal of Marine Research 51:843–868.CrossRefGoogle Scholar
  19. Lucas, L. V., J. R. Koseff, J. E. Cloern, S. G. Monismith, andJ. K. Thompson. 1999a. Processes governing phytoplankton blooms in estuaries. I: The local production-loss balance.Marine Ecology Progress Series 187:1–15.CrossRefGoogle Scholar
  20. Lucas, L. V., J. R. Koseff, S. G. Monismith, J. E. Cloern, andJ. K. Thompson. 1999b. Processes governing phytoplankton blooms in estuaries. II: The role of horizontal transport.Marine Ecology Progress Series 187:17–30.CrossRefGoogle Scholar
  21. Megard, R. O. andT. Berman. 1989. Effects of algae on the Secchi transparency of the southeastern Mediterranean Sea.Limnology and Oceanography 34:1640–1655.CrossRefGoogle Scholar
  22. Ministere de l’Environnement. 1980. Recueil des Observations, Campagnes 1980. Ministere de l’Environnement, Centre National Pour l’Exploitation des Oceans, Reseau National d’Observation de la Qualitie du Milieu Marin. Paris, France.Google Scholar
  23. Monbet, Y. 1992. Control of phytoplankton biomass in estuaries: A comparative analysis of microtidal and macrotidal estuaries.Estuaries 15:563–571.CrossRefGoogle Scholar
  24. National Oceanic and Atmospheric Administration. 1990. Estuaries of the United States, vital statistics of a national resource base. National Oceanic and Atmospheric Administration, National Ocean Service, Rockville, Maryland.Google Scholar
  25. National Oceanic and Atmospheric Administration and United States Department of Commerce. 1985. National estuarine inventory, data atlas, Volume 1: Physical and hydrologic characteristics. National Oceanic and Atmospheric Administration, Rockville, Maryland.Google Scholar
  26. Nichols, F. H. andJ. K. Thompson. 1985. Time scales of change in the San Francisco Bay benthos.Hydrobiologia 129:121–138.CrossRefGoogle Scholar
  27. Platt, T., D. F. Bird, andS. Sathyendranath. 1991. Critical depth and marine primary production, p. 205–218.In Proceedings of the Royal Society of London, Volume 246 of B, Biological Sciences, Harrison and Sons, U.K.Google Scholar
  28. Roman, C. T., N. Jaworski, F. T. Short, S. Findlay, andR. S. Warren. 2000. Estuaries of the northeastern United States: Habitat and land use signatures.Estuaries 23:743–764.CrossRefGoogle Scholar
  29. Salomon, J. C. 1988. Oceanographic characteristics of the Seine estuary, p. 79–88.In B. Kjerfve (ed.). Hydrodynamics of Estuaries, Volume II, Estuarine Case Studies. CRC Press, Boca Raton, Florida.Google Scholar
  30. Stephens, C. V. 1986. A three-dimensional model for tides and salinity in the Bristol Channel.Continental Shelf Research 6:531–560.CrossRefGoogle Scholar
  31. Thompson, J. K. 1999. The effect of infaunal bivalve grazing on phytoplankton bloom development in South San Francisco Bay. Ph.D. Dissertation, Stanford University, Palo Alto, California.Google Scholar
  32. Uncles, R. J. 1982. Residual currents in the Severn estuary and their effects on dispersion.Oceanologica, Acta 5:403–410.Google Scholar
  33. Uncles, R. J., M. B. Jordan, andA. H. Taylor. 1986. Temporal variability of elevations, currents, and salinity in a well-mixed estuary, p. 103–122.In D. A. Wolfe (ed.), Estuarine Variability. Academic Press, San Diego, California.Google Scholar

Sources of Unpublished Materials

  1. Brock, D. personal communication. Texas Water Development Board, 1700 North Congress Avenue, P. O. Box 13231, Austin, Texas 78711-3231.Google Scholar
  2. Chauvurd, L. personal communication. Chargé de Recherche au CNRS, Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer, UMR CNRS 6539-LEMAR, Technopole Brest Iroise, Place Nicolas Copernic, 29280 Plouzané, France.Google Scholar
  3. May, C. L., J. R. Koseff, L. V. Lucas, J. E. Cloern, and D. H. Schoellhamer. In review. Effects of spatial and temporal variability of turbidity on phytoplankton blooms.Marine Ecology Progress Series.Google Scholar

Copyright information

© Estuarine Research Federation 2002

Authors and Affiliations

  1. 1.U.S. Geological SurveyMenlo Park

Personalised recommendations