Folia Geobotanica

, Volume 40, Issue 4, pp 385–405 | Cite as

Morphometric and genetic divergence among populations ofNeotinea ustulata (Orchidaceae) with different flowering phenologies

  • Milena Haraštová-Sobotková
  • Jana Jersáková
  • Pavel Kindlmann
  • Ladislav Čurn


The terrestrial orchid speciesNeotinea ustulata has recently been split into two subspecies, differing remarkably in their flowering time, but only slightly in morphological characteristics, which makes their taxonomic status uncertain. We have analyzed morphometric and genetic differences between the early- and late-flowering populations in Central Europe. Our results on morphology are ambiguous. Indirect gradient analysis has not shown a distinct separation of early- and late-flowering individuals in the ordination space. However, according to MANOVA, populations of early- and late-flowering plants can be distinguished by plant height, leaf length, numbers of basal (rosette) and stem leaves and even better by certain ratios of these numbers. All genetic analyses, on the other hand, are definite and consistently distinguish two groups. Random amplified polymorphic DNA (RAPD) markers have shown that the early- and late-flowering populations differ significantly from one another. Principal coordinate analysis (PCoA) based on presence/absence matrix of RAPD bands separated the two groups, implying that the difference in flowering phenology could form an effective barrier to gene exchange. Partitioning of genetic diversity in analysis of molecular variance (AMOVA) has shown that the genetic divergence between the two groups, early- and late-flowering populations, is somewhat greater (33%) than the genetic variability among populations within particular group (23%). Using the Mantel test, we found that genetic differentiation coefficients between populations closely correspond to their geographic distribution. After elimination of the effect of sample origin from the model, direct gradient analysis (RDA) has shown that the early- and late-flowering groups differ significantly in their RAPD spectra. To conclude, our results indicate the presence of two genetically and phenologically distinct taxa, but the weak morphological differentiation supports the taxonomic rank of variety rather than subspecies.


Flowering phenology Orchids RAPD Taxonomy Variety 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bateman R.M., Pridgeon A.M. &Chase M.W. (1997): Phylogenetic of subtribeOrchidinae (Orchidoideae, Orchidaceae) based on nuclear ITS sequences. 2. Infrageneric relationships and reclassification to achieve monophyly ofOrchis sensu stricto.Lindleyana 12: 113–141.Google Scholar
  2. Bateman R.M. (2001): Evolution and classification of European orchids: insights from molecular and morphological characters.J. Eur. Orchideen 33: 33–119.Google Scholar
  3. Bateman R.M., Hollingsworth P.M., Preston J., Yi-Bo L., Pridgeon A.M. &Chase M.W. (2003): Molecular phylogenetics and evolution ofOrchidinae and selectedHabenariinae (Orchidaceae).Bot. J. Linn. Soc. 142: 1–40.CrossRefGoogle Scholar
  4. Borg S.J. (1972):Variability of Rhinanthus serotinus (Schönh.)Oborny in relation to environment. Thesis, Rijksuniversiteit te Groeningen, Groeningen.Google Scholar
  5. Caporali E., Grünanger P., Marziani G., Servettaz O. &Spada A. (2001): Molecular (RAPD) analysis of some taxa of theOphrys bertolonii aggregate.Israel J. Pl. Sci. 49: 85–89.CrossRefGoogle Scholar
  6. Davies P., Davies J. &Huxley A. (1988):Wild orchids of Britain and Europe. Chatto & Windus, The Hogarth Press, London.Google Scholar
  7. Dubouzet J.G., Murata N. &Shinoda K. (1997): RAPD analysis of genetic relationship amongAlstromeria L. cultuvars.Sci. Hort. 68: 181–189.CrossRefGoogle Scholar
  8. Farrel L. (1985): Biological Flora of the British Isles, No. 160.Orchis militaris L.J. Ecol. 73: 1041–53.CrossRefGoogle Scholar
  9. Foley M.J.Y. (1987): The current distribution and abundance ofOrchis ustulata L. in northern England.Watsonia 16: 409–415.Google Scholar
  10. Foley M.J.Y. (1990): The current distribution and abundance ofOrchis ustulata L. in southern England.Watsonia 18: 37–42.Google Scholar
  11. Foley M.J.Y. (1992): The current distribution and abundance ofOrchis ustulata L. (Orchidaceae) in the British Isles — an updated summary.Watsonia 19: 121–126.Google Scholar
  12. Gumprecht R. (1981): SpätblühendeOrchis ustulata.Orchidee 31: 36.Google Scholar
  13. Huff D.R., Peakall R. &Smouse P.E. (1993): RAPD variation within and among natural populations of outcrossing buffalograss [Buchloë decatyloides (Nutt.)Engelm.].Theor. Appl. Genet. 86: 927–934.CrossRefGoogle Scholar
  14. Jacquet P. &Scappaticci G. (2003):Troisième mise à jour. Une Répartition des Orchidées sauvages de France. Société Française d’Orchidophile, Paris.Google Scholar
  15. Jenkinson M.N. (1995):Wild orchids of Hampshire and the isle of Wight. Orchid Sundries Ltd., Gillingham.Google Scholar
  16. Jensen J.M. &Pedersen H.A. (1999): Ny lokalitet for Bakke-Gogeurt (Orchis ustulata) — med noter om artens fanologiske og morfologiske variation (A new station forOrchis ustulata — with notes on the phenological and morphological variation of this species).Flora og Fauna 105: 29–36.Google Scholar
  17. Kreutz C.A.J. &Dekker H. (2000):De orchideeën van Nederland — ecologie, verspreiding, bedreiging, beheer (Orchids of the Netherlands — ecology, distribution, threat, conservation). Uitgave Kreutz & Seckel, Landgraaf & Raalte.Google Scholar
  18. Kümpel H. (1988): Über eine spätblühendeOrchis ustulata-Sippe.Haussknechita 4: 23–24.Google Scholar
  19. Kümpel H. &Mrkvicka A.Ch. (1990): Untersuchungen zur Abtrennung derOrchis ustulata L. subsp.aestivalis (Kümpel)Kümpel & Mrkvicka.Mitt. Arebeitskreis Heimische Orchid.Baden-Württemberg 22: 306–324.Google Scholar
  20. Lennartsson T. (1997): Seasonal differentiation — a conservative reproductive barrier in two grasslandGentianella (Gentianaceae) species.Pl. Syst. Evol. 208: 45–69.CrossRefGoogle Scholar
  21. Levi A., Rowland L.J. &Hartung J.S. (1993): Production of reliable randomly amplified polymorphic DNA (RAPD) markers from DNA of woody plants.Hort. Sci. 28: 1188–1190.Google Scholar
  22. Lihová J., Marhold K. &Neuffer B. (2000): Taxonomy ofCardamine amara (Cruciferae) in the Iberian Peninsula.Taxon 49: 747–763.CrossRefGoogle Scholar
  23. Lim S.H., Liew C.F., Lim C.N., Lee Y.H. &Goh C.J. (1997): A simple and efficient method of DNA isolation from orchid species and hybrids.Biol. Pl. 41: 313–316.CrossRefGoogle Scholar
  24. Lim S.H., Teng P.C.P., Lee Y.H. &Goh C.J. (1999): RAPD analysis of some species in the genusVanda (Orchidaceae).Ann. Bot. (London) 83: 193–196.CrossRefGoogle Scholar
  25. Marhold K., Jongepierová I., Krahulcová A. &Kučera J. (2005): Morphological and karyological differentiation ofGymnadenia densiflora andG. conopsea (Orchidaceae) in the Czech Republic and Slovakia.Preslia 77: 159–176.Google Scholar
  26. Moravec J. (1995):Rostlinná společenstva České republiky a jejich ohrožení (Red list of plant communities of the Czech Republic and their endangerment). Severočeskou přírodou, Litoměřice.Google Scholar
  27. Mrkvicka A.Ch. (1991): Bestäuber, Chromosomenzahl und weitere Beobachtungen zuOrchis ustulata L. subsp.aestivalis (Kümpel)Kümpel & Mrkvicka.Mitt. Arebeitskreis Heimische Orchid.Baden-Württemberg 23: 331–338.Google Scholar
  28. Nieto Feliner G., Fuertes Aguilar J. &Rosselló J.A. (2002): Reticulation or divergence: the origin of the rare serpentine endemic assessed with chloroplast, nuclear and RAPD markers.Pl. Syst. Evol. 231: 19–38.CrossRefGoogle Scholar
  29. Nybom H. &Bartish I.V. (2000): Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants.Perspect. Pl. Ecol. 3: 93–114.CrossRefGoogle Scholar
  30. Olfelt J.P., Furnier G.R. &Luby J.J. (2001): What data determine whether a plant taxon is distinct enough to merit legal protection? A case study ofSedum integrifolium (Crassulaceae).Amer. J. Bot. 88: 401–410.CrossRefGoogle Scholar
  31. Parker P.G., Snow A.A., Schug M.D., Booton G.C. &Fuerst P.A. (1998): What molecules can tell us about populations: choosing and using a molecular marker.Ecology 79: 361–382.Google Scholar
  32. Peakall R. &Smouse P.E. (2001):GenAlEx V5: Genetic Analysis in Excel. Population genetic software for teaching and research. Australian National University, Canberra. Scholar
  33. Pérez T., Albornoz J. &Dominguez A. (1998): An evaluation of RAPD fragment reproducibility and nature.Molec. Ecol. 7: 1347–1357.CrossRefGoogle Scholar
  34. Perný M., Tribsch A. &Anchev M.A. (2004): Infraspecific differentiation in Balkan diploidCardamine acris (Brassicaceae): molecular and morphological evidence.Folia Geobot. 39: 405–429.CrossRefGoogle Scholar
  35. Podani J. (1994):Multivariate data analysis in ecology and systematics. A methodological guide to the SYN-TAX 5.0 package. SPB Publishing, The Hague.Google Scholar
  36. Preston C.D., Pearman D.A. &Dines T.D. (2002):New Atlas of the British and Irish Flora — An atlas of the vascular plants of Britain, Ireland, the Isle of man and the Channel Islands. Oxford University Press, Oxford.Google Scholar
  37. Pridgeon A.M., Bateman R.M., Cox A.V., Hapeman J.R. &Chase M.W. (1997): Phylogenetics of subtribeOrchidinae (Orchidoideae, Orchidaceae) based on nuclear ITS sequences. 1. Intergeneric relationships and polyphyly ofOrchis sensu lato.Lindleyana 12: 89–109.Google Scholar
  38. Procházka F. (1977): Die Orchideen des Ostböhmischen Bezirkes. Teil III.Práce & Stud. — Příroda 9: 91–119.Google Scholar
  39. Procházka F. &Velísek V. (1983):Orchideje naší přírody (Orchids of our wilderness). Academia, Praha.Google Scholar
  40. Reineke D. &Rietdorf K. (1987): Zur Phänologie vonOphrys spec. undOrchis ustulata. Mitt. Arebeitskreis Heimische Orchid.Baden-Württemberg 19: 835–840.Google Scholar
  41. Reineke D. &Rietdorf K. (1991): Zur Phänologie vonAnacamptis pyramidalis (L.)Rich. undOrchis ustulata L.Mitt. Arebeitskreis Heimische Orchid.Baden-Württemberg 23: 521–556.Google Scholar
  42. Ross S. (2004):Introduction to probability and statistics for engineers and scientists. Ed. 3. Academic Press, London.Google Scholar
  43. Schödelbauerová I. (2002):Životní strategie Orchis morio (Orchidaceae)(Life histories of Orchis morio (Orchidaceae)). Thesis, Faculty of Biological Sciences, University of South Bohemia, České Budějovice.Google Scholar
  44. Šmiták J. &Jatiová M. (1996):Verbreitung und Schutz der Orchideen in Mähren und Schlesien. AOPK ČR, Arca JiMfa, Třebíč.Google Scholar
  45. Soliva M. &Widmer A. (1999): Genetic and floral divergence among sympatric populations ofGymnadenia conopsea s.l. (Orchidaceae) with different flowering phenology.Int. J. Pl. Sci. 160: 897–905.CrossRefGoogle Scholar
  46. Stewart C.N. &Via L.E. (1993): A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications.BioTechniques 14: 748–750.PubMedGoogle Scholar
  47. Tali K. (1996): Spring-flowering and summer-flowering populations ofOrchis ustulata L. (Orchidaceae) in Estonia: their comparison and distribution.J. Eur. Orchideen 28: 573–582.Google Scholar
  48. Tali K. (2002): Dynamics ofOrchis ustulata populations in Estonia. In:Kindlmann P., Willems J.H. &Whigham D.F. (eds.),Trends and fluctuations and underlying mechanisms in terrestrial orchid populations, Bachuys Publishers, Leiden, pp. 33–42.Google Scholar
  49. Tali K. &Kull T. (2001): Highly variable flowering time inOrchis ustulata (Orchidaceae): consequences for population dynamics.Nord. J. Bot. 21: 457–466.Google Scholar
  50. ter Braak C. J. F. &Šmilauer P. (1998):CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination (version 4). Microcomputer Power, Ithaca.Google Scholar
  51. van der Cingel N.A. (1995):An atlas of orchid pollination. European orchids. A.A. Balkema, Rotterdam.Google Scholar
  52. Vöth W. (1984):Echinomyia magnicornis Zett. Bestäuber vonOrchis ustulata L.Die Orchidee 35: 189–192.Google Scholar
  53. Willems J.H. (2002): A founder population ofOrchis simia in The Netherlands: a 30-year struggle for survival. In:Kindlmann P., Willems J.H. &Whigham D.F. (eds.),Trends and fluctuations and underlying mechanisms in terrestrial orchid populations, Backhuys Publishers, Leiden, pp. 23–32.Google Scholar
  54. Williams J.G.K., Kubelík A.R., Livak K.J., Rafalski J.A. &Tingey S.V. (1990): DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nucl. Acids Res. 18: 6531–6535.PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2005

Authors and Affiliations

  • Milena Haraštová-Sobotková
    • 1
  • Jana Jersáková
    • 1
    • 2
  • Pavel Kindlmann
    • 1
    • 2
  • Ladislav Čurn
    • 3
  1. 1.Faculty of Biological SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Institute of Landscape EcologyAcademy of Sciences of the Czech RepublicČeské BudějoviceCzech Republic
  3. 3.Faculty of AgricultureUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations